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Abstract. Patient-specific 3D printing of congenital heart anatomy de-
mands an accurate segmentation of the thin tissue interfaces which char-
acterise these diagnoses. Even when a label set has a high spatial overlap
with the ground truth, inaccurate delineation of these interfaces can re-
sult in topological errors. These compromise the clinical utility of such
models due to the anomalous appearance of defects. CNNs have achieved
state-of-the-art performance in segmentation tasks. Whilst data augmen-
tation has often played an important role, we show that conventional im-
age resampling schemes used therein can introduce topological changes
in the ground truth labelling of augmented samples. We present a novel
pipeline to correct for these changes, using a fast-marching algorithm to
enforce the topology of the ground truth labels within their augmented
representations. In so doing, we invoke the idea of cardiac contiguous
topology to describe an arbitrary combination of congenital heart de-
fects and develop an associated, clinically meaningful metric to mea-
sure the topological correctness of segmentations. In a series of five-fold
cross-validations, we demonstrate the performance gain produced by this
pipeline and the relevance of topological considerations to the segmenta-
tion of congenital heart defects. We speculate as to the applicability of
this approach to any segmentation task involving morphologically com-
plex targets.
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1 Introduction

Medical image segmentation is an integral part of many pipelines for the analy-
sis of clinical data. For many applications, such as the calculation of ventricular
volumes, algorithmic approaches need only achieve a segmentation that shares a
sufficient overlap with an expert defined reference standard. This can be assessed
using the Dice Similarity Coefficient (DSC). However, in other cases the topol-
ogy of the segmentation is also important. For example, topologically correct
segmentation is a prerequisite for the detailed visualisation of paediatric con-
genital heart disease (CHD) anatomy using patient-specific 3D printed models.

Segmentation of the congenitally malformed heart from CMR images is a
challenging task due to inhomogeneity in signal intensity, limited contrast-to-
noise ratio and the presence of image artefacts [5]. Furthermore, significant vari-
ation in the structural presentation of disease limits the success of conventional
methods such as atlas-based strategies [9]. Finally, patient-specific 3D printing
demands a high fidelity representation of disease, demonstrating anatomy at
the limit of spatial resolution. Segmentation results should accurately represent
clinically meaningful thin tissue interfaces such as the atrial septum (see figure
). Inaccurate interface segmentation introduces anomalous topological features
that may falsely indicate the presence of congenital heart defects. Consequently,
exponents of patient-specific 3D printed heart models have hitherto relied on
manual and semi-automated segmentation methods, typically requiring at least
an hour of manual interaction per patient [5].

Convolutional neural networks (CNNs) have been successfully applied to a
multitude of image segmentation tasks, including the delineation of congenital
heart defects from CMR data. Wolterink et al. [6] trained a slice-wise, 2D CNN
using dilated convolutions. Meanwhile, Yu et al. [7] explored deep supervision
[8] and dense connectivity within 3D CNNs. Considering a limited training set
of just ten cases, these approaches achieved impressive results in terms of spatial
overlap. However, automated approaches cannot yet match the overlap perfor-
mance of the leading semi-automated procedures [35], and have largely paid
little attention to topological correctness.

Especially in the paediatric setting, developers of medical image segmenta-
tion algorithms cannot generally assume a database of thousands or millions of
training cases. Instead, state-of-the-art CNNs have relied on data augmentation
schemes. Augmentation acts as a source of regularisation and generalisation,
capturing modes of variation likely to exist in the underlying population but
which are absent from the training data. Spatial scaling, small angle rotation
and non-rigid deformation are attractive transformations for augmentation, ac-
counting for variation in patient size, orientation and posture. However, under
such schemes, and when subsequently resampled by nearest neighbour interpola-
tion, each of these can cause violations of ground truth topology near thin tissue
interfaces (see figure [2(b)).

Knowingly or otherwise, the best-performing previous work [6/7I8] has lim-
ited spatial augmentation to a subset of transformations that are topology-
preserving: orthogonal rotation and lateral inversion only. However, given that
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Fig. 1. An error in the segmentation of thin tissue interfaces such as the septum be-
tween left and right atria (LA, RA) can give rise to topological changes and the anoma-
lous appearance of a congenital heart defect (yellow arrow). Whilst the DSC between
ground truth (orange) and inferred (green) blood pool is high, (¢) demonstrates the
presence of five topologically and clinically relevant segmentation errors.

orthogonal rotation has no clinical rationale, this is unlikely to aid the generali-
sation of CNNs, providing a source of regularisation alone.

We hypothesise that topology-preserving label map augmentation is a pre-
requisite to any advanced provision for topologically-informed deep learning. To
investigate this hypothesis we make the following contributions in the context
of CHD segmentation from 3D CMR:

— We present a novel pipeline for the augmentation of label map data in a
topology-preserving manner.

— We present a novel metric for assessing the topological correctness of seg-
mentation results, using it to demonstrate improved performance compared
with previous work and with conventional image resampling schemes.

2 Methods

2.1 Topology-preserving augmentation pipeline

The notion of simple point is central to the fast-marching topology correc-
tion tool developed by Bazin et al. [1]. Starting from a scalar representation of
the naively transformed object, this algorithm removes non-simple points from
all isosurfaces, correcting the topology to match a known template. Whilst cor-
recting object topology to match that of a ball is straightforward, defining the
template for morphologically complex congenital anatomy presents a greater
algorithmic challenge.

Our solution (see figure[2)) is predicated on the idea that the whole heart blood
pool has an uncomplicated topological representation. In reality, the topology of
the blood pool label can be highly complex, demonstrating numerous fine-scale

! Those whose binary label value can be flipped without changing the topology of the
overall label map.
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Fig. 2. Spatial transformation and nearest neighbour resampling of a ground truth
label set (a), can result in anomalous topological changes such as defects within the
atrial septum (b). Such changes can be corrected by consideration of a CCT template
(f). Having two shunts between the respectively topologically spherical left and right
heart (ventricular and atrial septal defect), this patient exhibits toroidal CCT. The
template is derived by topological erosion of a multi-class representation of the blood
pool (d, e) and subsequently transformed to the space of the augmented image (g, h).

features associated with the trabeculated, endocardial surfaces. To avoid this
complexity, we invoke a property that we refer to as cardiac contiguous topology
(CCT). This describes the structural relationships between sub-classes of the
cardiac blood pool and their communication. Importantly, the CCT captures
the appearance of thin tissue interfaces and defects by defining how and where
the heart’s chambers and vessels are contiguous.

To remove topological features associated with trabeculation, each sub-class
is corrected (via the approach in [I]) to have topology equivalent to a ball at
the outset. Once recombined, the topology of the blood pool is defined only
by the connections of each cardiac sub-class. Furthermore, we require that the
blood pool class constitutes a well-composed setd. Such label maps have the
advantageous property that repeated topological erosion is guaranteed to result
in a one voxel wide CCT template. This captures the topology of the ground
truth blood pool in a morphologically simple object free from thin interfaces (see
figure 2((1)).

Having established a CCT template for each ground truth label map, the two
can be spatially transformed in tandem. Whilst nearest neighbour resampling is
likely to cause topological errors in the label map, the morphologically simpler
CCT template can be resampled without incurring such changes.

We resample the transformed blood pool label using trilinear interpolation,
realising an image bounded in the range [0, 1]. Akin to a probability map, this is
corrected to share the topology of the transformed CCT template, ensuring that
the arbitrary CCT of the ground truth labels is maintained (see figure 2l(c)).

2 The topology of a well-composed set is independent of neighbourhood connectivity.
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Fig. 3. The V-net architecture used. Output feature map sizes at training are indicated.
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Most often, the sub-valvular apparatus and its association with the papillary
muscles are only partially visualised in CMR: the true-to-life topological prop-
erties of the myocardium are rarely apparent. Hence, we resample the spatially
transformed myocardium label by naive nearest neighbour interpolation.

2.2 Study design

Data — We employ the ten cases provided during the training phase of
the HVSMR Challenge 2016 (see [B] for acquisition and clinical details). Each
case includes an isotropic, high-resolution, axially-reformatted, 3D CMR volume
acquired at Boston Children’s Hospital and demonstrating CHD anatomy. This is
tightly cropped around a provided set of manually segmented labels, delineating
the whole heart blood pool and myocardium as two separate classes.

Prior to experimentation, an expert in paediatric, CHD segmentation cor-
rected small topological errors that were present in the provided blood pool label
maps. The vast majority of corrections removed false positive voxels from within
thin interfaces. Totally, 0.098% and 0.0059% of the blood pool and myocardium
classes were changed respectively. In a series of five-fold cross-validations (train
on eight, test on two), we address a three-class segmentation problem, separat-
ing the blood pool, myocardium and background classes. In the context of a
deep CNN, the performance of the topology-preserving augmentation pipeline
is compared with a naive, nearest neighbour resampling of label data and with
augmentation by orthogonal rotation and lateral flipping only (as in [GI7I8]).

Architecture — We adopt the V-net architecture (see figure[3)) in all exper-
iments [4], using 3D convolution to learn residual features across spatial scales.

Metrics — Overlap performance was assessed using the DSC. However,
such global metrics are largely insensitive to errors in thin interface regions.
To characterise the topology of the inferred blood pool, we introduce a novel,
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interpretable metric. This extends the notion of simple points to connected com-
ponents, algorithmically counting the number of topologically relevant clusters
of voxels where inferred and ground truth segmentations disagree (see figure
[(c)). This approach is clinically meaningful as clusters of topologically relevant
errors indicate the anomalous appearance of congenital defects.

Implementation — Prior to augmentation, all CMR data were normalised
to have zero mean and unit variance. The topology-preserving augmentation
pipeline used the SimpleITK package for spatial transformation and resampling;
fast-marching topology correction [I] and associated topological operations used
relevant plugins for the Medical Image Processing And Visualisation (MIPAV)
platform. From the ten cases provided by the HVSMR Challenge, a total of
10,000 training examples were pre-computed by data augmentation according
to figure[2l For comparison we pre-computed a further 10,000 training examples
by augmentation using orthogonal rotation and lateral inversion alone. In both
cases we also made small perturbations to the voxel intensity of the image data.

All models were trained for 8,000 iterations using the Adam optimiser (Py-
torch default settings for learning rate and beta parameters) and the categorical
cross entropy loss. Each batch contained eight image patches of 96 x 96 x 96 vox-
els, randomly cropped from the augmented data. With respect to the submission
of batches and weight initialisation, models were trained identically.

3 Results and discussion

Our results assess the impact of two characteristics of data augmentation: (i)
whether spatial transformation is clinically informed; and (ii) whether label map
topology is preserved after transformation and resampling.

Perhaps for their ease of implementation, previous work has employed or-
thogonal rotations [6I7I8] and lateral inversion [7I8] only. Whilst these transfor-
mations are guaranteed to preserve label map topology, they are not represen-
tative of the distribution of CMR data seen in the clinic. For example, since
patient position is invariably head first-supine, orthogonal rotations are unreal-
istic. Though small variations in patient orientation are observed, these are best
captured by small angle rotations. We seek to describe this distribution through
the use of the clinically justified transformations shown in figure

With respect to spatial overlap, figure [4] suggests a benefit to this approach.
The DSC improves from 0.918 (0.891,0.934)|§ to 0.925 (0.918,0.938) and from
0.839 (0.808,0.854) to 0.868 (0.828,0.888), for the blood pool and myocardium
classes respectively. These results suggest that unlike orthogonal rotation, clini-
cally justified transformations act not only as a source of regularisation but are
also beneficial to the generalisability of the network. Overall, these results are
consistent with, or in the case of the myocardium class, exceed those achieved
by previous work [26I71]].

As well as spatial overlap, we are also concerned with the topology of the in-
ferred blood pool label map. Of particular interest are the false positive clusters

3 All results reported as median (interquartile range).
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Fig. 4. CNN segmentation performance in terms of spatial overlap (left) and topological
accuracy (right), where training data are augmented by spatial transformation which
is: CJ - clinically justified; TP - topology-preserving; CJ + TP - clinically justified and
topology-preserving *using our novel augmentation pipeline.

which characterise defective interface segmentations and the anomalous pres-
ence of defects. Figure [ demonstrates that compared to previous work, the
naive introduction of clinically justified transformations has a detrimental effect
on inferred blood pool topology. The median number of topologically relevant
false positive clusters increases from 9.0 (6.0,12.0) to 12.0 (6.3, 22.5). However,
when coupled with our topology-preserving augmentation pipeline and its con-
sideration of CCT, this number falls dramatically to 6.5 (6.0, 10.5): a statistically
significant improvement according to Wilcoxon Signed Rank test (p = 0.022).
This also represents improved performance compared with the clinically unreal-
istic though topology-preserving augmentation schemes used in previous work.

These observations suggest that the topological features of inferred cardiac
segmentations are strongly dependent on the training data. Though perhaps
predictable, it must be remembered that in the context of complex morphology,
topological features can be encapsulated by relatively few voxels. In fact, across
the ten thousand augmented representations of the ten ground truth label sets
we produced, less than 0.5% of blood pool voxels were changed by our topology-
preserving pipeline.

Figure Ml shows that best performance can be attributed to augmentation
pipelines which are both clinically justified and which preserve ground truth
label topology. Our topology-preserving augmentation pipeline provides a means
of simultaneously achieving both qualities.
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4 Conclusion

Our work demonstrates for the first time the importance of label map topology
to the task of CNN-based CHD segmentation from 3D CMR images of paediatric
patients. We have presented a novel pipeline for the augmentation of training
data for CNN optimisation. Invoking the concept of CCT and developing an asso-
ciated, clinically meaningful metric, we show that the properties of this pipeline
- allowing for clinically justified data augmentation whilst preserving arbitrary
label map topology - are beneficial to the topological properties of inferred seg-
mentations. We speculate that these findings may be applicable to any medical
image segmentation task for which morphologically complex foreground objects
can be represented as a number of contiguous sub-classes.
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