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Abstract

Direct visualization of photoreceptor cells, specialized neurons in the eye that sense light, can be 

achieved using adaptive optics (AO) retinal imaging. Evaluating photoreceptor cell morphology in 

retinal diseases is important for monitoring the onset and progression of blindness, but 

segmentation of these cells is a critical first step. Most segmentation approaches focus on cell 

region extraction, without directly considering cell boundary localization. This makes it difficult to 

track cells that have ambiguous boundaries, which result from low image contrast, anisotropic cell 

regions, or densely-packed cells whose boundaries appear to touch each other. These are all 

characteristics of the AO images that we consider here. To address these challenges, we develop an 

AOSeg-Net method that uses a multi-channel U-Net to predict the spatial probabilities of the cell 

boundary and obtain cell centroid and region distribution information as a means for facilitating 

cell segmentation. Five-color theorem guarantees the separation of any touching cells. Finally, a 

region-based level set algorithm that combines all of these visual cues is used to achieve subpixel 

cell segmentation. Five-fold cross-validation on 428 high resolution retinal images from 23 human 

subjects showed that AOSegNet substantially outperformed the only other existing approach with 

Dice coefficients [%] of 84.7 and 78.4, respectively, and average symmetric contour distances 

[μm] of 0.59 and 0.80, respectively.

Keywords

U-Net; Level set segmentation; Adaptive optics; Five-color theorem; Cone photoreceptor neuron

1 Introduction

Adaptive optics (AO) retinal imaging can be used to directly visualize the morphology of 

photoreceptor cells in the living human eye [10]. Monitoring cell morphology can enhance 

the understanding of disease propagation at the cellular level. Subpixel cell segmentation is a 

prerequisite to monitor subtle cell changes as a one pixel error can cause up to 5% error in 

cell size measurements [5]. Accurate cell segmentation in AO images is hindered by low 

image contrast that often exists at cell boundaries (Fig. 1A). Anisotropic shading on opposite 

sides of cells requires special handling, and low pixel sampling necessitates subpixel 

segmentation in order to better monitor subtle changes in cell morphology. To date, there has 

only been one published method for automated cell segmentation in these AO images [10] 
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(circularly-constrained active contour model, CCACM [5]). CCACM dynamically constructs 

circularly-shaped priors for each cell, which subsequently constrains active contours used in 

order to identify cell contours. Although CCACM achieved high accuracy when cells were 

loosely packed, it is prone to over-segmentation in the case of densely-packed regions where 

neighboring cells are very close together (cell crowding). This restricts the applicability of 

CCACM.

Recently, segmentation methods based on deep learning have shown substantial 

improvement over traditional image processing approaches [2,4,8,9,12,14]. The key 

challenge with AO images is separating crowded cells whose boundaries appear to touch 

each other. One approach would be to adaptively adjust weights at cell boundaries to train 

neural networks [8]. However, this approach is prone to over-segmentation of densely-

packed cell regions. Contour-aware approaches [2,14] are effective ways to address cell 

crowding, but are prone to under-segmentation. To simplify the task of cell decrowding, joint 

cell segmentation and detection, combined with the use of star-convex polygons to represent 

cell shapes, was utilized [9]. Another possible solution is to post-process prediction results 

from the deep learning method by using conditional random fields [3]. However, this 

approach does not naturally achieve subpixel cell segmentation. Level set method [13] is an 

efficient means to address this issue by propagating active contours in a subpixel-level step. 

Five-color theorem has been combined with level sets to segment crowded cells [6]. 

However, identifying cell regions in terms of image intensity is unreliable, making the 

subsequent level set propagation in each colored region inefficient.

This paper introduces a combined approach incorporating deep learning and level sets for 

improving segmentation of photoreceptor cells in AO retinal images, particularly in dense 

regions where neighboring cell boundaries appear to touch each other. Our approach is 

called AOSegNet. It utilizes a multi-channel U-Net to simultaneously extract cell centroid, 

region, and contour visual cues, instead of only predicting cell regions as in the case of the 

traditional U-Net. Next, centroid and region cues from deep learning are combined to 

separate any clusters of touching cell regions into distinct, untouching regions, based on the 

five-color theorem. Finally, visual cues and colored regions are used to achieve subpixel cell 

segmentation. Five-fold cross-validation was performed to compare AOSegNet with existing 

methods. These results open up the possibility of monitoring subtle cellular changes that 

occur during neurodegenerative retinal diseases.

2 Methodology

AOSegNet consists of three components: a multi-channel U-Net (Fig. 1B) to extract cell 

cues (centroids, Fig. 1C; regions, Fig. 1D; and contours, Fig. 1E), a five-color theorem 

approach to separate touching cells (Fig. 1F), and a region-based level set method (Fig. 1G) 

to determine the final subpixel segmentation.

2.1 Learning Cell Visual Cues

A multi-channel U-Net is leveraged to predict three cell visual cues: centroids, regions, and 

contours (Fig. 1B). Similar to the conventional U-Net [8], the multi-channel U-Net also 

consists of contracting and expanding paths (left and right sides, respectively). The 
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contracting path is similar to a VGG network [11] that repeatedly applies 3 × 3 convolutions, 

followed by a rectified linear unit (ReLU) and 2 × 2 max pooling operations. The expanding 

path contains an upsampling series of the image feature map, which is a 2 × 2 convolution 

that concatenates image features from the contracting path, the upsampled feature map from 

the expanding path, and a ReLU.

Unlike the conventional U-Net [8] which only includes the region mask, the multi-channel 

U-Net contains centroid, region, and contour masks during training. A 3-channel label map 

is thus formulated, which improves prediction accuracy as they jointly constrain each other. 

It leads to a combinatorial loss function.

L = Lcentroid + Lregion + Lcontour (1)

Visual cues of cell centroids and regions are represented as binary masks, I(x), x ∈ Ω, where 

Ω is the image domain. The corresponding predictions are Î(x). The loss function for each 

binary mask is formulated as the combination of binary cross entropy and Dice coefficient 

loss. In this way, Lcentroid and Lregion can both be defined as

S(x) = − 1
2 ∑

i = 1

2
I xi logI xi −

2∑i = 1
2 I xi I (x)

∑i = 1
2 I2 xi + ∑i = 1

2 I 2 xi
(2)

To improve the accuracy of cell contour localization, the contour mask Ic(x) is represented as 

a spatial density, which assigns probability values to image points near cell contours, 

assuming a Gaussian distribution, which results in

Lcontour = S(x)exp Ic(x) − I c(x) 2/σ2 (3)

where σ = 0.5 due to Ic(x) ∈ [0, 1]. This term (Eq. 3) measures the intensity value changes 

between the labeled contour mask Ic(x) and predicted contour mask Îc(x).

Altogether, the proposed multi-channel U-Net simultaneously predicts the probability masks 

of cell centroid, region, and contour cues (Figs. 1C–E) for a given AO retinal image (Fig. 

1A).

2.2 Cell Decrowding

This step aims to extract cell regions that are clustered together in close proximity and 

separate them into groups of distinct regions. Although neighboring regions often touch, 

their simultaneously-learned centroids do not, which is key for efficient decrowding. 

Following Otsu’s threshold method [7] to extract cell centroids and regions from their visual 

cue masks produced by the multi-channel U-Net, each centroid is used to identify its 

corresponding cell region through the watershed algorithm.

However, the extracted cell regions often contain segmentation errors due in large part to 

low pixel sampling and lack of subpixel accuracy. In order to achieve subpixel segmentation, 

cell regions within connected clusters of cells must first be disconnected from each another. 

We observe that cells within clusters can be separated based on the five-color theorem [1], 
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which states that any 2D planar graph can be labeled with as few as five colors such that no 

neighbors have the same color. We can construct a planar graph with cell centroids as nodes, 

V = {v1, v2,⋯, vn}, with color C(v) for each node. Cell centroids whose corresponding 

regions are connected to vi are contained in adj(vi). The greedy coloring algorithm is used to 

assign a color to each cell region:

Algorithm 1.

Greedy coloring

1: for i = 1 to n do:

2:  c(vi) := 0

3: end (for)

4: for i = 1 to n do:

5:  Let c(vi) be the smallest ℤ+
 s.t. c(vi) ∉ {c(vj) : vj ∈ adj (vi)}

6: end (for)

We can thus separate connected cells into different groups with distinct, separated cells 

inside, as illustrated in Fig. 1F.

2.3 Guided Level Set Subpixel Segmentation

This step achieves subpixel segmentation by combining region and contour cues from the 

multi-channel U-Net with identity priors from the five-color theorem. Identity priors 

globally constrain level set propagation, and region and contour cues locally adjust level 

sets. A multiphase level set segmentation framework is defined as

E = ∫
Ω

∑
i = 1

m
Eregion + Econtour + Eidentity dx (4)

where m ≤ 5 is constrained by the five-color theorem. Let Ir(x) be the region cue mask from 

the multi-channel U-Net, and ϕ:Ω ℝ be a signed distance function that represents the level 

set function.

Eregion = Ir − μ1
2H(ϕ) + Ir − μ2

2(1 − H(ϕ)) (5)

Here, H(x) is the Heaviside function, with H(x) = 1 if x ≥ 0; otherwise H(x) =0. μ1 and μ2 

are mean values of the mask regions inside and set ϕ, respectively.

Econtour = c1F Ic ∇H(ϕ) (6)

with F (Ic) = 1 − Ic(x) because the contour cue mask is normalized to Ic(x) ∈ [0, 1] with 

large values at the cell boundary, where level set propagation should terminate.

Establishing signed distance functions ψ on different-colored cell regions (Fig. 1F) leads to 

the identity priors, which are defined as
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Eidentity = c2(H(ϕ) − H(ψ))2
(7)

Here, c1 = 2 and c2 = 1.5 represent scalar weights for balancing the level set framework for 

all of the images in this paper. Note that the identity priors only allow level sets to propagate 

near the image boundary that was predicted by the multi-channel U-Net, which reduces 

merging of cell regions contained within a certain multicolored region, while still achieving 

subpixel level cell segmentation.

The level set evolution equation is derived from Eq. 4 using Eqs. 5–7.

∂ϕi
∂t = δ ϕi − Ir − μi

2 + ∏
j ≠ i

1 − H ϕ j + c1div F Ic
∇ϕi
∇ϕi

+ 2c2 H ϕi − H ψ i , 1 ≤ i ≤ m
(8)

Figure 1G shows the final cell segmentations computed using Eq. 8. Note that all touching 

clustered cells are successfully separated into individual cells with subpixel level accuracy.

2.4 Data Collection and Validation Methods

AO images of cone photoreceptors from 23 human subjects (age: 27.1±8.8 years) were used 

to generate a total of 428 images (333×333 pixels), randomly selected from these subjects 

across different retinal regions. Note that AO images can vary substantially at different 

retinal regions of the same subject due to the variation of cone photoreceptor density, eye 

motion, and imaging conditions. Therefore, it is reasonable to have AO images from the 

same subject in both training and test datasets. Cones were manually labeled with subpixel 

accuracy by expert graders familiar with AO images for validation purposes. Five-fold cross-

validation was performed to evaluate the accuracy and robustness of AOSegNet.

We compared segmentation results with CCACM [5], which is, to our knowledge, the only 

existing automated cell segmentation method for AO images of cone photoreceptors. 

Quantitative comparison was performed using six metrics: area overlap (AP), Dice 

coefficient (DC), area difference (AD), average symmetric contour distance (ASD), 

symmetric room mean square contour distance (RSD), and maximum symmetric absolute 

contour distance (MSD). Finally, cone diameters measured from our segmentation results 

were compared to previously published diameter measurements, including histological 

studies.

3 Experimental Results

3.1 Five-Fold Cross-Validation of Segmentation Accuracy and Robustness

Across each of the five folds, an average of 1343 corresponding cell regions were extracted 

by AOSegNet and CCACM. They were compared to each other and also to manually-

labeled groundtruth. In all cases, AOSegNet performed substantially better than CCACM 

(Table 1). In each fold, the training time for the multi-channel U-Net was ~6 h (2000 

iterations; Microsoft Windows 7, Intel(R) core(TM) i7–6850K CPU, and dual NVIDIA 
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GeForce GTX 1080 Ti GPUs). Following training, evaluation on each test dataset required 

less than 5 s per image.

Examples of segmentation results showed high cell segmentation accuracy on AO retinal 

images using AOSegNet (Fig. 2). Compared to CCACM, AOSegNet improved detection 

accuracy, and reduced both over- and under- segmentation (white arrows in Fig. 2). Our 

method combines spatial density contour cues as well as the five-color-theorem separation 

strategy, in order to accurately identify the contours of all photoreceptor cells.

3.2 Cell Diameter Measurements

AOSegNet performed well across a test dataset consisting of 78 different AO images from 

healthy eyes. To demonstrate that the measurements were anatomically relevant, we 

computed cone photoreceptor cell diameters using the corresponding contours and compared 

them to those calculated with existing state-of-the-art methods (Fig. 3). Overall, AOSegNet 

measurements of cone diameters were similar to published values, including those measured 

from histological images. We also verified that the use of subpixel measurements improved 

accuracy: relative cell diameter differences of 7.9 ± 0.3% and 8.8±0.3% were achieved for 

subpixel and pixel approaches, respectively, over the five folds, mean±SD.

4 Conclusion and Future Work

In this paper, we developed an AOSegNet for AO retinal images. A multi-channel U-Net 

was designed to simultaneously learn different types of visual cues (cell centroids, regions, 

and contours). These visual cues are used separately and in conjunction with each other in 

subsequent steps to intuitively improve segmentation performance. For example, cues 

integrated with the five-color theorem provide a simple solution to separate connected cell 

clusters, which substantially reduces segmentation errors when cells are crowded. By 

combining all learned and derived priors, we show that subpixel cell segmentation can be 

achieved. This subpixel representation is enabled in large part by the fact that cell contours 

were trained through a spatial density representation.

Five-fold cross-validation demonstrated that AOSegNet substantially outperforms the only 

existing AO photoreceptor cell segmentation method [5] across six different quantitative 

metrics (Table 1). These approaches will facilitate construction of normal databases of cell 

morphology in the living human eye, and will be useful for evaluating cell morphology in 

diseased eyes.

References

1. Appel K, Haken W: Every planar map is four colorable. Illinois J. Math 21(3), 429–490 (1977)

2. Chen H, Qi X, Yu L, et al.: DCAN: deep contour-aware networks for object instance segmentation 
from histology images. MedIA 36, 135–146 (2017)

3. Chen L, Papandreou G, Kokkinos I, et al.: DeepLab: semantic image segmentation with deep 
convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. 
Intell 40(4), 834–848 (2018) [PubMed: 28463186] 

4. Gu Z, Cheng J, Fu H, et al.: CE-Net: context encoder network for 2D medical image segmentation. 
IEEE Trans. Med. Imaging (2019, in press)

Liu et al. Page 6

Ophthalmic Med Image Anal (2019). Author manuscript; available in PMC 2019 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Liu J, Jung H, Dubra A, Tam J: Cone photoreceptor cell segmentation and diameter measurement on 
adaptive optics images using circularly constrained active contour model. Invest. Ophthalmol. Vis. 
Sci 59(11), 4639–4652 (2018) [PubMed: 30372733] 

6. Nath SK, Palaniappan K, Bunyak F: Cell segmentation using coupled level sets and graph-vertex 
coloring In: Larsen R, Nielsen M, Sporring J (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. 
Springer, Heidelberg (2006). 10.1007/1186656513

7. Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Cybern. 9(1), 62–66 
(1979)

8. Ronneberger O, Fischer P, Brox T: U-Net: convolutional networks for biomedical image 
segmentation In: Navab N, Hornegger J, Wells WM, Frangi AF (eds.) MICCAI 2015. LNCS, vol. 
9351, pp. 234–241. Springer, Cham (2015). 10.1007/978-3-319-24574-428

9. Schmidt U, Weigert M, Broaddus C, Myers G: Cell detection with star-convex polygons In: Frangi 
AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G (eds.) MICCAI 2018. LNCS, vol. 
11071, pp. 265–273. Springer, Cham (2018). 10.1007/978-3-030-00934-230

10. Scoles D, Sulai Y, Langlo C, et al.: In vivo imaging of human cone photoreceptor inner segments. 
Invest. Ophthalmol. Vis. Sci 55(7), 4244–4251 (2014) [PubMed: 24906859] 

11. Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. 
In: International Conference on Learning Representations (2015)

12. Valen DV, Kudo T, Lane K, et al.: Deep learning automates the quantitative analysis of individual 
cells in live-cell imaging experiments. PLoS Comput. Biol 12(11), e1005177 (2016). 10.1371/
journal.pcbi.1005177 [PubMed: 27814364] 

13. Vese L, Chan T: A multiphase level set framework for image segmentation using the Mumford and 
Shah model. Int. J. Comput. Vis 50(7), 271–293 (2002)

14. Xu Y, Li Y, Wang Y, et al.: Gland instance segmentation using deep multi-channel neural networks. 
IEEE Trans. Biomed. Eng 64(12), 2901–2912 (2017) [PubMed: 28358671] 

Liu et al. Page 7

Ophthalmic Med Image Anal (2019). Author manuscript; available in PMC 2019 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Overview of AOSegNet for an example AO image of photoreceptors (A) using a multi-

channel U-Net (B), which generates a set of visual cues consisting of centroids (C), regions 

(D), and contours (E). Cell centroid and region cues are used by the five-color theorem to 

separate touching cells. Red, blue and green regions represent distinct cells (F). A region-

based level set segmentation is used to achieve subpixel cell segmentation (G). Scale bar, 20 

μm
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Fig. 2. 
Segmentation results on AO images varying in image quality and content. Compared to 

CCACM, AOSegNet improves detection accuracy (white arrows, top row), reduces over-

segmentation (white arrows, center row), enhances under-segmentation (white arrows, 

bottom row), and performs well in the vicinity of image artifacts (lower portion, bottom 

row). Scale bar, 20 μm.
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Fig. 3. 
Comparison of cone photoreceptor cell diameters generated with AOSegNet to those 

calculated with other methods. Each dot represents the average cone diameter measured 

within a single AO image (e.g. Fig. 1A). Since cone diameter varies depending on the 

location in the eye (retinal eccentricity), measured values were averaged every 0.3 mm in 

order to compare them to averaged values from previously-reported values. The average 

cone diameters measured were similar to previously-published values.
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Table 1.

Segmentation accuracy comparison between AOSegNet and CCACM [5] over five-fold cross-validation

Method AP (%) DC (%) AD (%) ASD (μm) RSD (μm) MSD (μm)

AOSegNet 74.2 ± 0.8 84.7 ± 0.6 19.9 ± 0.9 0.59 ± 0.02 0.70 ± 0.02 1.39 ± 0.04

CCACM 66.0 ± 0.6 78.4 ± 0.4 26.9 ± 0.9 0.80 ± 0.02 0.98 ± 0.02 1.99 ± 0.05
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