Abstract
Question answering systems have often a pipeline architecture that consists of multiple components. A key component in the pipeline is the query generator, which aims to generate a formal query that corresponds to the input natural language question. Even if the linked entities and relations to an underlying knowledge graph are given, finding the corresponding query that captures the true intention of the input question still remains a challenging task, due to the complexity of sentence structure or the features that need to be extracted. In this work, we focus on the query generation component and introduce techniques to support a wider range of questions that are currently less represented in the community of question answering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template generation for question answering over knowledge graphs. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1191–1200. International World Wide Web Conferences Steering Committee (2017)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Cudré-Mauroux, P., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1533–1544 (2013)
Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1415–1425 (2014)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)
Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings. arXiv preprint arXiv:1406.3676 (2014)
Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)
Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering system over the semantic web. Semant. Web (Preprint) 1–19 (2018)
Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569 (2018)
Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J.: Lc-quad 2.0: a large dataset for complex question answering over Wikidata and dbpedia. In: Proceedings of the 18th International Semantic Web Conference (ISWC). Springer (2019)
Dubey, M., Dasgupta, S., Sharma, A., Höffner, K., Lehmann, J.: AskNow: a framework for natural language query formalization in SPARQL. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 300–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_19
Hakimov, S., Unger, C., Walter, S., Cimiano, P.: Applying semantic parsing to question answering over linked data: addressing the lexical gap. In: Biemann, C., Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds.) NLDB 2015. LNCS, vol. 9103, pp. 103–109. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19581-0_8
Hamon, T., Grabar, N., Mougin, F., Thiessard, F.: Description of the POMELO system for the task 2 of QALD-2014. In: CLEF (Working Notes), pp. 1212–1223 (2014)
Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)
Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)
Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6(2), 167–195 (2015)
Lindberg, D.A., Humphreys, B.L., McCray, A.T.: The unified medical language system. Yearb. Med. Inf. 2(01), 41–51 (1993)
Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answering over knowledge graphs on word and character level. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1211–1220. International World Wide Web Conferences Steering Committee (2017)
Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J.: Learning to rank query graphs for complex question answering over knowledge graphs. In: International Semantic Web Conference. Springer (2019)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Ngomo, N.: 9th challenge on question answering over linked data (QALD-9). language 7, 1
Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., Fischer, A.: Introduction to neural network based approaches for question answering over knowledge graphs (2019)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Shekarpour, S., Marx, E., Ngomo, A.C.N., Auer, S.: Sina: Semantic interpretation of user queries for question answering on interlinked data. Web Semant.: Sci. Serv. Agents World Wide Web 30, 39–51 (2015)
Singh, K., et al.: Why reinvent the wheel: Let’s build question answering systems together. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1247–1256. International World Wide Web Conferences Steering Committee (2018)
SZ, H., et al.: Casia@ v2: A MLN-based question answering system over linked data (2014)
Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22
Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano, P.: Template-based question answering over RDF data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 639–648. ACM (2012)
Walter, S., Unger, C., Cimiano, P., Bär, D.: Evaluation of a layered approach to question answering over linked data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7650, pp. 362–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35173-0_25
Wick, M.: GeoNames. GeoNames (2006)
Yih, S.W.T., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base (2015)
Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by attentive convolutional neural network. arXiv preprint arXiv:1606.03391 (2016)
Zafar, H., Napolitano, G., Lehmann, J.: Formal query generation for question answering over knowledge bases. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 714–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_46
Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: structured classification with probabilistic categorial grammars. arXiv preprint arXiv:1207.1420 (2012)
Acknowledgments
This research was supported by the European Union H2020 project CLEOPATRA (ITN, GA. 812997) as well as by the German Federal Ministry of Education and Research (BMBF) funding for the project SOLIDE (no. 13N14456).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Abdelkawi, A., Zafar, H., Maleshkova, M., Lehmann, J. (2019). Complex Query Augmentation for Question Answering over Knowledge Graphs. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C., Meersman, R. (eds) On the Move to Meaningful Internet Systems: OTM 2019 Conferences. OTM 2019. Lecture Notes in Computer Science(), vol 11877. Springer, Cham. https://doi.org/10.1007/978-3-030-33246-4_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-33246-4_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33245-7
Online ISBN: 978-3-030-33246-4
eBook Packages: Computer ScienceComputer Science (R0)