Skip to main content

Abstract

Disease prediction based on modeling the correlations between compounded indicator factors is a widely used technique in high incidence chronic disease prevention diagnosis. Predictive models based on personal health information have been developed historically by using simple regression fitting over relatively few factors. Regression approaches have been favored in previous prediction modeling approaches because they are simplest and do not assume any non-linearity in the model for contributions of the chosen factors. In practice, many factors are correlated and have underlying non-linear relationships to the predicted outcome. Deep learning offers a means to construct a more complex modeling approach, along with automation and adaptation. The aim of this paper is to assess the ability of a deep learning model to predict the heart disease incidence using a common benchmark dataset (University of California, Irvine (UCI) dataset). The performance of deep learning model has been compared with four popular machine learning models (two linear and two nonlinear) in predicting the incidence of heart disease using data from 567 participants from two cohorts taken from UCI database. The deep learning model was able to achieve the best accuracy of 94% and an AUC score of 0.964 when compared to other models. The performance of deep learning and nonlinear machine learning models was significantly better compared to the linear machine learning models with increase in the dataset size.

This research was funded by the Government of South Australia and Shandong Provincial Government, China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AIHW: Cardiovascular disease: Australian facts 2011. Cardiovascular disease series. Cat. no. CVD 53. Canberra. Australian Institute of Health and Welfare (2011)

    Google Scholar 

  2. Bache, K., Lichman, M.: UCI Machine Learning Repository Irvine. University of California, School of Information and Computer Science, Oakland (2013). http://archive.ics.uci.edu/ml

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. D’Agostino, R.B., et al.: General cardiovascular risk profile for use in primary care. Circulation 117(6), 743–753 (2008)

    Article  Google Scholar 

  5. Goff, D.C., et al.: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 63(25 Part B), 2935–2959 (2014)

    Article  Google Scholar 

  6. Goldstein, B.A., Navar, A.M., Carter, R.E.: Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur. Heart J. 38(23), 1805–1814 (2016)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Hlatky, M.A., et al.: Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119(17), 2408–2416 (2009)

    Article  Google Scholar 

  9. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, Hoboken (2013)

    Book  Google Scholar 

  10. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No. 98th8468), pp. 41–48. IEEE (1999)

    Google Scholar 

  11. Sajeev, S., Maeder, A.: Cardiovascular risk prediction models: a scoping review. In: Proceedings of the Australasian Computer Science Week Multiconference, p. 21. ACM (2019)

    Google Scholar 

  12. Van Gestel, T., et al.: Benchmarking least squares support vector machine classifiers. Mach. Learn. 54(1), 5–32 (2004)

    Article  Google Scholar 

  13. Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N.: Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4), e0174944 (2017)

    Article  Google Scholar 

  14. WHO: Prevention of cardiovascular disease : guidelines for assessment and management of total cardiovascular risk. World Health Organization (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelda Sajeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sajeev, S. et al. (2019). Deep Learning to Improve Heart Disease Risk Prediction. In: Liao, H., et al. Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting. MLMECH CVII-STENT 2019 2019. Lecture Notes in Computer Science(), vol 11794. Springer, Cham. https://doi.org/10.1007/978-3-030-33327-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33327-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33326-3

  • Online ISBN: 978-3-030-33327-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics