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Abstract. As the demand for more descriptive machine learning models
grows within medical imaging, bottlenecks due to data paucity will exac-
erbate. Thus, collecting enough large-scale data will require automated
tools to harvest data/label pairs from messy and real-world datasets,
such as hospital picture archiving and communication systems (PACSs).
This is the focus of our work, where we present a principled data cura-
tion tool to extract multi-phase computed tomography (CT) liver studies
and identify each scan’s phase from a real-world and heterogenous hos-
pital PACS dataset. Emulating a typical deployment scenario, we first
obtain a set of noisy labels from our institutional partners that are text
mined using simple rules from DICOM tags. We train a deep learning sys-
tem, using a customized and streamlined 3D squeeze and excitation (SE)
architecture, to identify non-contrast, arterial, venous, and delay phase
dynamic CT liver scans, filtering out anything else, including other types
of liver contrast studies. To exploit as much training data as possible,
we also introduce an aggregated cross entropy loss that can learn from
scans only identified as “contrast”. Extensive experiments on a dataset
of 43K scans of 7680 patient imaging studies demonstrate that our 3DSE
architecture, armed with our aggregated loss, can achieve a mean F1 of
0.977 and can correctly harvest up to 92.7% of studies, which signifi-
cantly outperforms the text-mined and standard-loss approach, and also
outperforms other, and more complex, model architectures.
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1 Introduction

Over the last decade, deep learning techniques have seen success in automati-
cally interpreting biomedical and diagnostic imaging data [1,2]. However, robust
performance often requires training from large-scale data. Unlike computer vi-
sion datasets, which can rely on crowd-sourcing [3], the collection of large-scale
medical imaging datasets must typically involve physician labor. Thus, there ex-
ists a tension between modeling power and data requirements that only promises
to increase [4]. An enticing prospect is mining physician expertise by collecting
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retrospective data from picture archiving and communication systems (PACSs),
but the current generation of PACSs do not properly address the curation of
large-scale data for machine learning. In PACSs, DICOM tags regarding scan
descriptions are typically hand inputted, non-standardized, and often incom-
plete, which leads to the need for extensive data curation [5]. These limitations
frequently produce high mislabeling rates, e.g., the 15% rate reported by Gueld
et al., meaning that simply selecting the scans of interest (SOIs) from a large
set of studies can be prohibitively laborious. This has spurred efforts to auto-
matically text mine image/label pairs from PACSs [6,7,8], but these efforts rely
on complicated and customized natural language processing (NLP) technology
to extract labels. Apart from the barriers put forth by this complexity, these
solutions address contexts where it is possible to extract the information of in-
terest from accompanying text. This is not always possible, as NLP parsers [9,8]
cannot always straightforwardly correct errors in the original reports or fill in
missing information. As such, collecting large-scale data will also require devel-
oping automated, but robust, tools that go beyond mining from DICOM tags
and/or reports.

This is the topic of our work, where we articulate a robust approach to
large-scale data curation based on visual information. In our case, we focus on
a hospital PACS dataset we collected that consists of 43 010 computed tomog-
raphy (CT) scans of 7 680 imaging studies from 4 666 unique patients with liver
lesions, along with pathological diagnoses. Its makeup is highly heterogeneous,
comprising studies of multiple organs, protocols, and reconstruction types. Very
simple and accessible text matching rules applied to the DICOM tags can accu-
rately extract scan descriptions; however omissions and errors in the text mean
these labels are noisy and unreliable. Without loss of generality, we focus on
extracting a large-scale and well curated dataset of dynamic liver CT studies
from our PACS data. Dynamic CT is the most common protocol to categorize
and assess liver lesions [10], and we expect a large-scale dataset to prove highly
valuable for the development of computer-aided diagnosis systems, provided it is
well curated. Thus, the goal is to use the noisy labels to train a visual recognition
system that can much more robustly identify dynamic liver CT studies, extract
the corresponding axial-reconstructed scans, and identify the phase of each as
being non-contrast (NC), arterial (A), venous (V), or delay (D). Fig. 1 shows
examples of each phase and discriminating features of each.

Unlike prior work, we focus on extracting multi-phase volumetric SOIs of
a certain type, rather than on extracting disease tags or labels. This places a
high expectation on performance, i.e., F1 scores of 0.95, or higher. To tackle this
problem, we develop a principled phase recognition system whose contributions
are threefold. First, we collect the aforementioned large-scale dataset from a
hospital PACS, that includes more than 43 010 scans. Second, we introduce a
customized phase-recognition deep-learning model, comprised of a streamlined
version of C3D [11] with squeeze and excitation (SE) layers. We show that this
simple, yet effective model, can outperform much more complicated models.
Third, we address a common issue facing data curation systems, where many
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Fig. 1: Non-contrast (NC), arterial (A), venous (V), and delay (D) phases are the SOIs
in dynamic CT. Radiologists use contrast information in several organs to determine
the phase, such as contrast in the heart/aorta (red arrows), portal veins (green arrows),
and kidneys (yellow arrows).

text mined labels are too general. In our case, these are labels that indicate only
“contrast” rather than the more specific NC, A, V, or D SOIs. So that we can
still use these images for training, along with their weak supervisory signals, we
design an aggregated cross entropy (ACE) loss that incorporates the hierarchical
relationship within annotations. Our experimental results demonstrate that our
3DSE model, in combination with our ACE loss, can achieve significantly better
phase recognition performance than the text-mined method and other deep-
learning based approaches. To the best of our knowledge, this is the first work
investigating visual-information based data curation methods in PACS, and we
expect that our data curation system would also prove a useful curation approach
in domains other than liver dynamic CT.

2 Methods

2.1 Dataset

Our goal is to reliably curate as large as possible a dataset of liver dynamic CT
scans, with minimal labor. To do this, we first extracted a dataset of CT studies
from the PACS of Anomymized, corresponding to patients who had pathological
diagnoses of liver lesions, with the hope that such a dataset would be of great
interest for later downstream analysis. This resulted in 7 680 studies of 4 666
patients. For each study, the number of scans range from 4 to 30 and there are
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one to three studies per patient. The resulting dataset is highly heterogenous,
containing several types of reconstructions, projections, anatomical regions, and
contrast protocols that we not interested in, e.g., computed tomography arterial
portography. Studies containing dynamic CT scans may have anywhere from one
or all of NC, A, V, and D contrast phase SOIs. Our aim is to identify and extract
the axial-reconstructed versions of these scans from each study, should they exist.
As such, this task exemplifies many of the general demands and challenges of
data curation across medical domains.

With the dataset collected, we next applied a set of simple text matching
rules to the DICOM tags to noisily label each scan as being either NC, A, V, D
or other (O). The full set of rules are tabulated in our supplemental materials.
The text-matching rules are more than sufficient to reliably extract labels based
on text alone, due to the extremely simple structure and vocabulary of DICOM
tags. However, because the source DICOM tags are themselves error-prone and
unreliable [12], these labels suffer from inaccuracies, which we demonstrate later
in our results. Finally, we filter out any scans that have less than 10 slices, with
a spatial resolution coarser than 5mm, or were taken after or during a biopsy
or transplant procedure. As a result, we found 1728, 1703, 1504 and 1736 A,
V, D and NC scans, respectively, with 326 scans labeled as contrast. We then
manually annotated a validation set and a test set, comprising 801 and 1262
scans; 150 and 231 studies; and 101 and 196 patients, respectively. This left
a training set of 29 891 scans from 5 164 studies of 3 267 patients with noisy
text-mined annotations.

2.2 3DSE Network

As Fig. 1 illustrates, visual cues indicating the phase can be located in different
anatomical areas. Given this, we opt for a 3D classification network. State of the
art 3D classification networks, such as 3D-Resnet [13] and C3D [11], are often
quite large, adding to the training time and increasing overfitting tendencies.
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Fig. 2: Our 3DSE network is designed to have a relatively small amount of parameters
and consists of three parts, including two 3D convolution layers, one SE layer, and two
fully connected layers.

Instead, we use a streamlined but effective architecture we call 3DSE, which
is illustrated in Fig. 2. To begin, we first downsample all volumes to 128×128×
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32. From these, image features are extracted using two convolutional layers,
each followed by a rectified linear unit and max pooling layers. With such a
streamlined feature extracter, activation maps are highly local [14]. Thus, we
add squeeze and excitation (SE) [14] layers. These scale each feature channel
with multiplicative factors computed using global pooling, providing an efficient
means to increase descriptive capacity and inject global information. Subsequent
pooling layers and a two fully connected layers provide the five output phase
predictions. The total parameter size 19.22 MB which is significantly smaller
than 3D-Resnet [13] and C3D [11].

2.3 Aggregated Cross Entropy

Frequently, text-mined labels are only able to provide a more general label of
“contrast” for a scan, indicating that it could be any of A, V, or D SOIs. Since
our goal is to determine the exact phase, the easiest way to handle such scans
is to simply remove them from training, at the cost of using less data. Yet, such
weakly supervised data still provides useful information, which should ideally
be exploited to use as much training data as possible. To do this, we formulate
a simple aggregated cross entropy (ACE) loss that can execute a cross entropy
(CE) loss, but these weakly supervised instances. We formulate the probability
of “contrast” as equalling the sum of the probabilities of all contrast phases:

pC = pA + pV + pD, (1)

=
exp(wA) + exp(wV) + exp(wD)∑

i exp(wi)
, (2)

where (2) assumes a pseudo-probability calculated using softmax, w(.) denotes
the logit outputs, and i indexes all five outputs.

The pC can be naively used in a CE loss, but that would preclude using a
numerically stable “softmax with CE” formulation. Instead, for scans that can
only be labelled as “contrast”, the CE loss can be written as:

`CE = −yNC log(pNC)− yO log(pO)− yC log(pC), (3)

= − log

(
exp(wA) + exp(wV) + exp(wD)∑

i exp(wi)

)
, (4)

= logsumexp({wi})− logsumexp({wA,wV,wD}), (5)

where y(.) denotes the ground truth. The elimination of all terms but the contrast
term in (4), follows from yC equalling one, with all other y(.) values equalling
zero. The logsumexp function enjoys numerically stable forward- and backward-
pass implementations. Thus, when presented with a “contrast” scan, our model
uses (5) for the loss, providing a simple and numerically stable means to exploit
all available data to train our desired, but more fine-grained, outputs.

3 Results

We tested our 3DSE network, with and without the ACE loss, on our dataset, and
compared it to both the noisy text-mined labels and also 3D-Resnet-101 [13] and
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C3D [11]. For all models we perform a sweep of learning rates and report results
corresponding to the best setting and stopping point based on the validation set.

Focusing first on scan-level comparisons, Tbl. 1 presents F1 scores across the
different phase types. As can be observed from the text-mined results, many

Table 1: Quantitative comparison of scan-level performance. Best results are marked
in blue. For the 3DSE + ACE F1 phase-level scores, we use ∗ and † to indicate if
differences were statistically significant (α < 0.05) compared to the text-mining and
3DSE model, respectively. Significance was calculated using randomized tests [15] and
adjusted using the multiple comparison correction of Holm-Bonferroni [16].

Text Mining 3DSE 3DSE + ACE

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

NC 0.977 0.895 0.934 0.965 0.965 0.964 0.993 0.986 0.988∗†

A 0.966 0.983 0.974 0.974 0.966 0.970 0.991 0.991 0.992

V 0.975 0.782 0.868 0.965 0.946 0.956 0.930 0.993 0.963∗

D 0.964 0.956 0.960 0.964 0.956 0.960 0.972 0.930 0.951

O 0.926 0.986 0.955 0.981 0.989 0.985 0.997 0.990 0.993∗†

mean 0.962 0.920 0.938 0.970 0.964 0.967 0.977 0.978 0.977

scans are misclassified as O and many D scans are missed, demonstrating the
shortfalls of relying on labels based on DICOM tags. In contrast, the vision-based
3DSE significantly reduces classification errors, improving the mean F1 score
from 0.938 (via text mining) to 0.967. In particular, V’s F1 score is improved
from 0.868 to 0.956. Performance is increased even further when we use the ACE
loss to include the “contrast” scans in training, boosting the mean F1 score to
0.977. While tests show a degradation of performance for the D phase, these
differences do not meet statistical significance, unlike the statistically significant
improvements seen in the NC, V, and O phases. Thus, these results validate the
use of our ACE formulation to exploit as much training data as possible.

Shifting focus to across-model comparisons, Tbl. 2 compares our 3DSE model,
with and without SE, against other state-of-the-art 3D deep models [13,11]. As
can be seen, 3D-Resnet is nearly 17 times larger than 3DSE and performs poorly,
which we observed was due to overfitting. Moving down in model size, C3D [11]
performs better than 3D-Resnet, but is still unable to match 3DSE. If we re-
move the SE layer from our 3DSE model, performance considerably suffers,
which demonstrates that the SE layer is important in achieving high perfor-
mance. Despite this, performance still matches C3D even though a significantly
smaller number of parameters are used. Finally, the last rows show 3DSE with
and without the ACE loss, with latter achieving the highest performance at a
model size much smaller than competitors. Finally, as Fig. 3 illustrates, the 3DSE
model focuses on anatomical regions that are consistent with clinical practice.
More visualizations can be found in our supplementary material.

These boosts in scan-level performance are important, but arguably the
study-level performance is even more important, as the ultimate goal is to iden-
tify and extract as many dynamic liver CT studies as possible for downstream
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Table 2: Across-model quantitative evaluation using the F1 score. Best and second-best
results are marked in blue and red, respectively.

NC A V D O mean model size (MB)

3DResnet[13] 0.560 0.866 0.259 0.052 0.929 0.533 325.22

C3D[11] 0.972 0.965 0.920 0.895 0.989 0.948 33.56

3DSE-SE 0.954 0.953 0.924 0.914 0.985 0.946 11.44

3DSE 0.964 0.970 0.956 0.960 0.985 0.967 19.22

3DSE+ACE 0.988 0.992 0.963 0.951 0.993 0.977 19.22

Arterial Phase Venous Phase Delay Phase

Cardiac Cardiac Liver Kidney Kidney

Fig. 3: Respond-CAM [17] visualizations of 3DSE from three different dynamic CT
scans. (A) the 3DSE focuses on contrast accumulation in the cardiac region; (V): 3DSE
focuses on contrast remnants in the cardiac blood pool, liver portal veins, and kidney
veins; (D): 3DSE focuses on contrast accumulation in the ureters of the kidney.

Table 3: Study-level performance of text mining and 3DSE. Each row groups studies
based on the number of dynamic CT scans of interest (SOIs) they possess. Each column
counts the number of studies based on how many scans were misclassified, if any. Best
results for each SOI number are marked in blue.

Text Mining 3DSE 3DSE + ACE

0 Errs. 1 Err. ≥ 2 Errs. 0 Errs. 1 Err. ≥ 2 Errs. 0 Errs. 1 Err. ≥ 2 Errs.

0 SOIs 35 8 10 47 4 2 48 5 0

1 SOI 36 13 1 47 1 2 49 1 0

2 SOIs 0 1 0 1 0 0 1 0 0

3 SOIs 15 3 1 19 0 0 19 0 0

4 SOIs 101 6 1 95 12 1 97 10 1

Total 186 32 13 209 16 6 214 16 1

Accuracy 80.9% – – 90.5% – – 92.7% – –

analysis. Thus, we also evaluate how many studies are correctly extracted, mean-
ing all of their corresponding SOIs are correctly classified. As Tbl. 3 demon-
strates, 90.5% of studies have all of their scans correctly classified by our 3DSE
model. Including the wealky supervised data using the ACE loss, we can fur-
ther improve this to 92.7%. If we extrapolate these results to entire dataset of
7 680 studies, this means that the 3DSE model, armed with the ACE loss, can
correctly identify and extract 609 more studies than the text mining approach.
This is a significant boost of study numbers for any subsequent analyses.
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4 Conclusion

We presented a data curation tool to robustly extract multi-phase liver studies
from a real-world and heterogenous hospital PACS. This includes a streamlined,
but powerful, 3DSE model and a principled ACE loss designed to handle incom-
pletely labelled data. Experiments demonstrated that our 3DSE model, along
with the ACE loss, can outperform both text mining and also more complex deep
models. These results indicate that our vision-based approach can be an effec-
tive means to better curate large-scale clinical datasets. Future work includes
evaluating our approach in other clinical scenarios, as well as investigating how
to harmonize text-mined features with our visual-based system.
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1 Additional Results

Arterial Phase Venous Phase Delay Phase

Cardiac Liver KidneyCardiac Kidney

Fig. 1: Additional respond-CAM visualizations of 3DSE.
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2 Text Mining Rules

Table 1: The text-mining rules for generating the initial annotation on our dynamic
CT dataset. The study description, series description, and protocol DICOM tags are
used for mining. Please note the study description and protocol are shared across all
series in a study.

Class Rules

arterial phase

“arterial”/“liver A”/“Liver -A”/“Artery”
/“HAP”/“Liver 3P A”/“Liver 3P C+ A”

/“A Phase”/“A-Phase”/“Liver 3P C-+ A.”/“CTA”
/“Liver 4P A”/“30s” in series description

venous phase

“venous”/“Liver 3P V”/“Liver 3P C+ V”/“Liver 3P +H”
/“LIVER H”/“Liver -V”/“Liver V”/“Portal”

/“Liver -V”/“Liver P.”/“Vena”
/“PVP”/“Phase H.”/“H./Phase”
/“V phase”/“phase V”/“V-phase”

/“Liver 3P C-+ V.”/“CTV”
/“Liver 4P V”/“70s” in series description

delay phase

“Liver 3P D”/“Liver D.”/“Liver -D”
/“delay”/“Liver 3P C-+ D.”/“Liver 3P C+ D”

/“D-phase”/“Liver 4P D”/“DP”/“180s”
/“EQP” in series description

non-contrast phase
“C-”/“PRECONTRAST”/“Abd-pelvis without contrast”

/“Non:Contrast”/“Non Contrast”/“Non-Contrast”
/“NoC” in series description

contrast
“ABD C+”/“A C+”/“abdomen C+”

/“AbdPel C”/“Body C+”/“with contrast”
/“POSTCONTRAST” in series description

other

CTAP “CTAP” in protocol/series description

guide
“guide”/“BX”/“POST”

in study description / series description
scano “Topo”/“scano”/“scout”/“surview” in series description

MIP “MIP” in series description

volume “volume” in series description

monitor “monitor” in series description

coronal “cor” in series description

oblique “obl” in series description

reformatted “reformatted” in series description

brain “brain” in series description

chest “lung”/“CXR”/“chest” in series description

pelvic “pelvic”/“Pelvis” in series description

3 phases in 1
“3 Phase Liver”/“120CC/3CC/SEC”

/“4cc sec”/“Tri-Phase Liver” in series description


