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Abstract. Despite their success in many computer vision tasks, con-
volutional networks tend to require large amounts of labeled data to
achieve generalization. Furthermore, the performance is not guaranteed
on a sample from an unseen domain at test time, if the network was not
exposed to similar samples from that domain at training time. This hin-
ders the adoption of these techniques in clinical setting where the imaging
data is scarce, and where the intra- and inter-domain variance of the data
can be substantial. We propose a domain adaptation technique that is
especially suitable for deep networks to alleviate this requirement of la-
beled data. Our method utilizes gradient reversal layers [4] and Squeeze-
and-Excite modules [6] to stabilize the training in deep networks. The
proposed method was applied to publicly available histopathology and
chest X-ray databases and achieved superior performance to existing
state-of-the-art networks with and without domain adaptation. Depend-
ing on the application, our method can improve multi-class classification
accuracy by 5-20% compared to DANN introduced in [4].

1 Introduction

Deep learning models have achieved great success in recent years on computer
vision tasks. Fully convolutional networks (FCNs) consistently achieve the state-
of-the-art performance in various tasks such as segmentation, classification and
detection. Despite their success, however, FCNs usually require large amounts of
labeled data from the domain in which the network will be deployed. As network
architectures become deeper with more trainable parameters, the requirement
for large amounts of data is further exacerbated as the networks are more prone
to overfitting. This leads to a need for even larger amounts of data to achieve
generalization. Furthermore, regardless of the size or the domain diversity of the
training set, there is no performance guarantee on an unseen dataset from a
domain that the network was not exposed to at training time. These issues are
especially problematic in medical image analysis, as the labeled data is scarce due
to the tedious and expensive data annotation process, and a large distributional
shift can be observed even if data comes from the same source.

Several methods, including network weight regularization, semi-supervised
approaches [3], meta-learning [8], and domain adaptation [4] have been pro-
posed to improve generalization performance on unseen datasets. In the present
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work, we will focus on the domain adaptation. These methods aim to lever-
age large amounts of cheap unlabeled data from a target domain to improve
generalization performance using small amounts of labeled data. In past work,
[11] proposed correcting covariate shift between domains by reweighting samples
from source domain to minimize the discrepancy between source and the tar-
get. This approach was later improved by minimizing distances between feature
mappings of source and target domains instead of the samples itself [4]. Further
modifications were proposed later that improved the benchmark performances
such as tri-learning, which assumes high confidence predictions are correct [10],
or leveraging the cluster assumption, in which the decision boundaries based
on the modified feature representations should not cross the high density data
regions [12].

In the present article we propose a simple, robust method that requires min-
imal modifications to an existing deep network to achieve domain adaptation.
Our model repurposes Squeeze-and-Excite blocks, introduced by [6] for feature
selection, to perform domain classification in the intermediate layers of a large
network. We use the “squeeze” operation to get a summary statistic at the end
of each convolutional block, and use a domain adaptation technique [4] to ex-
tract domain-independent features at each layer. The “excitation network” is
repurposed to perform domain classification. We extend this method by match-
ing distributions of source and target features at each layer via minimizing the
Wasserstein distance.

2 Methods

Due to its conceptual simplicity, we will build our model on top of the gradient
reversal layer (GRL) based domain adaptation, which was first introduced in
[4]. In an FCN, convolutional layers extract salient features layer by layer as the
feature maps shrink in spatial size and expand in semantic (depthwise) informa-
tion. Once enough abstraction on the image is achieved, features f are flattened
and typically fed into a few fully connected layers to perform the task objective,
e.g., classification. As the network usually optimizes a minimization objective,
extracted features may (and are likely to) overfit to the domain-specific noise.
Domain adaptation via gradient reversal aims to alleviate this by attaching an-
other classifier to the input f , which simultaneously optimizes an adversarial
objective: Given f , it tries to minimize the domain classification loss Ld between
N samples of the domain classifier with parameters θd while trying to maximize
this loss with respect to the feature extractor (with parameters θf ) of the orig-
inal FCN. In effect, this procedure aims to remove the learned features which
are domain-specific, while forcing the network to retain the domain-independent
features with error gradient signals

∂Ly

∂θy
and

∂Ly

∂θf
, where θy are the parameters

of the label classifier.
In [4], domain adaptation is achieved by backpropagating the negative bi-

nomial cross-entropy loss of the domain classifier network. Features from the
last layer prior to the fully connected classification layers are used as inputs to
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the domain classifier network. We note several problems with this approach: (1)
as the network depth increases, the error signal from the domain classifier will
tend to vanish, or will be insufficient to remove domain specific features in the
earlier layers, (2) given feature maps Xi and Xj where i < j, it becomes more
challenging for the network to extract domain-independent features for Xj if the
features from Xi are domain dependent, (3) even if domain specific features in
map Xi somehow are discarded in the later layers, the encoding of these fea-
tures into map Xi results in capacity underuse of the network, (4) even with the
adversarial training objective which forces the preservation of salient features, it
is likely for a high capacity network to employ arbitrary transformations on the
target samples to match source and target distributions (for a formal derivation,
see Appendix E of [12]). For simple tasks that do not require deep networks,
vanishing gradients or accumulation of domain dependent features across layers
do not affect the performance as much. However, in more complex medical imag-
ing analysis tasks, larger networks tend to perform better; hence, the domain
adaptation techniques are more likely to suffer from aforementioned issues. We
aim to alleviate this by regulating extracted features at each layer simultane-
ously by attaching a domain classifier at the end of the layer (see Figure 1), or
by performing unsupervised matching of distributions at each layer.

Given a feature map X ∈ RH′×W ′×C′
, we transform X into z ∈ RC′

by

average pooling, i.e., zk = 1
H′×W ′

∑H′

i=1

∑W ′

j=1 uk(i, j), where uk(i, j) indexes the

(i, j)th element of the response to the kth kernel of the map X, and zk is the
kth element of the vector z. We will use the shorthand ftr(Xi) = zi for the
transformation of map Xi (feature maps of layer i) into zi, which is coined as
the “squeeze” operation by [6]. Although zi itself is not enough for downstream
tasks such as classification or segmentation, it may contain enough information
to differentiate between two samples at a given layer. Given this information, we
aim to be able to perform domain adaptation at each layer, rather than just the
final feature map representation at the end of the network.

2.1 Gradient reversal layer based domain adaptation

Analogous to [4], we add domain classifiers at the end of each feature map Xi.
By interfering at the intermediate layers, we aim to extract robust features that
are invariant to the training domain using the supervision signal. The network is
then trained simultaneously for the domain adaptation along with the original
objective. We denote this as layer-wise domain-adversarial neural network, or
L-DANN, as our model is based on DANN [4].

The mini domain classifier network for each layer has the same structure for
each layer C ′, but with varying number of parameters (see Table 1, r indicates the
reduction ratio). As the earlier layers in convolutional networks tend to extract
more high level information such as texture patterns and edges, we increase the
complexity of the domain classifier network progressively, proportional to the
depth of the feature map Xi. Given N domains, the domain classifier network
maximizes the N -class cross entropy loss via backpropagation to obscure domain
information by removing the features from the map Xi.
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Fig. 1. Proposed modification to the DANN architecture.

2.2 Wasserstein distance based domain adaptation

Instead of using the domain labels directly, we can also achieve domain adapta-
tion by interpreting zi as samples drawn from different distributions. Given two
domains X s, X t, with zs and zt are samples drawn from X s and X t, respec-
tively, our objective is minzs,zt

d(zs, zt) where d(·, ·) is an arbitrary distribution
divergence. For our experiments, we use the Wasserstein-1 distance, also known
as the Earth mover’s distance, due to its stability in training [2]. In order to
stabilize the training further, we will use the method described in [5] to ensure
Lipschitz constraint on the critic, as opposed to the gradient clipping method
suggested in [2]. We use the term “critic” as opposed to discriminator/classifier,
to be consistent with [2,5]. The procedure is summarized in Algorithm 1, we omit
the details for brevity, and refer the interested reader to [5]. In the upcoming
sections, we will refer to this method as L-WASS, or layer-wise Wasserstein.

3 Experimental results

3.1 Implementation details

We do not use any padding or bias in the convolutional layers described in Table
1, and use the reduction ratio r = 16 for all the layers. We use ResNet archi-
tecture enhanced with Squeeze-and-Excite blocks as our task objective network
with varying number of layers depending on the task. Contrary to [4], we do not
use a constant λ to scale ∂Ld

∂θ , nor do we use annealing to stabilize the train-
ing. We use stochastic gradient descent (SGD) optimizer in all domain classifier,
critic, and the objective network with the learning rate 0.001, momentum 0.9
and weight decay of 0.0001. We have tried updating the domain classifier and
critic parameters with and without freezing the preceding layers and observed
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Algorithm 1 Unsupervised domain adaptation via Wasserstein distance with
gradient penalty for feature matching. Squeezed feature map from layer l is zkl ,
given input xk. The objective loss is Lobj (e.g., cross-entropy for classification).

Require: source Xs with samples xs and labels ys, target Xt, number of critic iter-
ations ncritic per generator iteration, batch size m, learning rates α1,2, gradient
penalty coefficient λ, initial parameters for the critic and the neural network for
the objective, θd, θf

1: repeat
2: for each layer j do
3: for t=1 to ncritic do
4: for i=1 to m do
5: Sample (xsi , y

s
i ) ∼ Xs, xti ∼ Xt, a random number ε ∼ U [0, 1]

6: zbj ← εzsj + (1− ε)ztj
7: L(i) ← Dj(z

s
j)−Dj(z

t
j)− λ(||∇zbj

Dj(z
b
j)||2 − 1)2

8: L
(i)
obj ← Lobj(x

s
i , y

s
i )− λ(||∇zbj

Dj(z
b
j)||2 − 1)2

9: end for
10: θd ← SGD(∇d

1
m

∑m
i=1 L

(i), θd, α1)
11: end for
12: end for
13: θf ← SGD(∇f

1
m

∑m
i=1 L

(i)
obj , θf , α2)

14: until θf converges

simultaneous training achieves superior performance. We perform 10 runs per
experiment, and report the mean accuracy ± the standard deviation. All exper-
iments are run for 100 epochs regardless of the network architecture or the data,
and we use the model with the highest validation accuracy achieved in the last
30 epochs for testing, to avoid selecting a model that achieved high accuracy
randomly, and has actually converged.

Input shape Kernel size Output shape

ftr(Xi) [1 × 1] × C’ - -
Conv [1 × 1] × C’ [1 × 1] × C’/r [1 × 1] × C’/r
ReLU [1 × 1] × C’/r - [1 × 1] × C’/r
Conv [1 × 1] × C’/r [1 × 1] × N ′ N ′

Table 1. Domain classifier/critic D(ftr(Xi)). The final output shape N ′ depends on
the architecture used: For L-DANN, we use N ′ = N , or number of classes, and for
L-WASS, we use N ′ = C′, number of input channels to perform distribution matching.

3.2 Effect of layer-wise domain adaptation on small networks

In order to determine whether layer-wise domain adaptation improves results on
networks with a small number of layers, we use the MNIST handwritten digits,
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MNIST-M (MNIST blended with random RGB color patches from the BSDS500
dataset), and the SVHN (street view house numbers) to perform digit classifi-
cation given an image which contains a single digit. SVHN has more variation
within the dataset; hence classifying SVHN digits is considered to be more chal-
lenging than MNIST or MNIST-M. For all experiments, we use ∼ 60000 images
per dataset for training, and ∼ 10000 for testing. We use a single 2-layer neural
network, MNIST architecture defined in [4], enhanced with batch normaliza-
tion prior to ReLU layers. As we do not optimize the architecture depending
on the dataset, or the direction of the adaptation, our results should only be
interpreted within the context of Table 2, and not to the results reported in [4].
As the MNIST architecture is not convolutional, we use the domain classifier
given in MNIST architecture for each layer. For L-WASS, the classifier remains
the same, with the exception that the number of output elements are 100, to
achieve more meaningful matching of distributions. Although the performance of
L-DANN remains comparable to DANN, L-WASS fails to converge for the sim-
plest experiment, hinting that for simple distributions, layer-wise Wasserstein
distribution matching is not suitable.

Method MNIST→MNIST-M MNIST→SVHN SVHN→MNIST

No adaptation 58 ±2 27.9±5.41 77±0.96
DANN 90.8 ±1.06 27.7±1.43 46.1±2.27

L-DANN 90.5 ±0.12 22.8 ±1.72 53.8 ±2.22
L-WASS N/C 21.0±2.11 71.2±0.91

Table 2. Comparison between DANN, L-DANN and L-WASS for smaller networks.
N/C: Network did not converge.

3.3 Effect of model complexity on domain adaptation

We test our method on another modality, namely on chest X-ray images acquired
from two separate institutions in USA, and in China that are classified into
normal patients as well as patients with manifestations of tuberculosis [9]. The
datasets vary in resolution, quality, contrast, positive to negative samples ratio,
and the number of samples. In addition, each dataset has separate watermarks
and descriptive texts in different parts of the X-rays, which are known to degrade
performance in neural networks. The first dataset consists of 138 images, which
we refer to as S, or small, and the second dataset consists of 662 image, which
we refer to as L, or large. In order to show that our method performs better
with deeper architectures, we compare two architectures: SE-ResNet-101 (49.6
million trainable parameters) and SENET 154 (116.3M). Results are shown in
Table 3. Note that although DANN slightly outperforms L-WASS in one of the
experiments, its performance is not consistent. In some settings, it performs
worse than networks without any domain adaptation, and even fails to converge
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for the deepest setting. In contrast, both L-DANN and L-WASS consistently
perform better than the no domain adaptation baseline. The utility of using a
deeper architecture can be observed in the S →L direction, where we gain up to
∼ 7% in accuracy, for L−DANN setting. In other words, deeper networks can
help better generalize to larger datasets given a small labeled dataset, which is
often the case in the clinical setting.

Architecture Source→ Target Method Precision Recall F1-score Accuracy

SE-ResNet-101 L→S No adaptation 100. 18.9 31.8 65.9
DANN 80.9 65.5 72.4 79.

L-DANN 88.1 63.8 74. 81.2
L-WASS 91.1 53.4 67.3 78.3

S→L No adaptation 68.7 72.6 70.6 69.3
DANN 71.8 67.6 69.6 70.1

L-DANN 72.6 73.7 73.1 73.9
L-WASS 70.9 76.1 73.4 72.1

SENET 154 L→S No adaptation 100. 3.4 6.6 59.4
DANN 90.9 51.7 65.9 77.5

L-DANN 100. 43.1 60.3 76.1
L-WASS 90.9 68.9 78.4 84.1

S→L No adaptation 79.3 65.1 71.5 73.7
DANN N/C N/C N/C N/C

L-DANN 75.1 84.5 79.5 80.9
L-WASS 88.8 75.1 81.6 81.3

Table 3. Comparison between DANN, L-DANN and L-WASS for deeper networks.

3.4 Domain adaptation for feature regularization

We also test our method on the BACH (BreAst Cancer Histopathology) chal-
lenge [7]. This challenge is composed of classification of patches extracted from
whole-slide images (WSI) into 4 classes (normal, benign, in-situ, and invasive
cancer) and segmentation of the WSI into these classes. As it is not uncommon
to achieve ∼ 90% accuracy on the classification part, we turn our attention to
the segmentation. There are 10 labeled + 20 unlabeled WSI for training, and 10
for testing. Given the stain variation among WSI, we are using the unlabeled 20
images for stain normalization, and for source (i.e., the institution, scanner or
the hospital) agnostic feature extraction. In this respect, the domain adaptation
acts as a regularizer on extracted features, retaining only the features which are
common in both domains. We train the same network, SE-ResNet-50, without
domain adaptation, with L-DANN module, with L-WASS, and with DANN,
and achieve scores (as defined in [1], which penalizes false negatives, or incorrect
“normal” class, more than false positives, or any of the remaining three classes)
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0.63, 0.68, 0.66, 0.65, respectively. Note that the 2nd best score on the public
leaderboard is 0.63.

4 Conclusions

We presented a novel domain adaptation method for fully convolutional networks
that can alleviate the requirements for large amounts of data, especially in deep
networks. Our method is simple, requires minimal amount of modification to
the original network architecture, adds small overhead to the training cost, and
is cost-free in test time. We tested our method with multiple public medical
imaging datasets and showed promising gains on multiple baseline networks.
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