Skip to main content

Intramodality Domain Adaptation Using Self Ensembling and Adversarial Training

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11795))

Abstract

Advances in deep learning techniques have led to compelling achievements in medical image analysis. However, performance of neural network models degrades drastically if the test data is from a domain different from training data. In this paper, we present and evaluate a novel unsupervised domain adaptation (DA) framework for semantic segmentation which uses self ensembling and adversarial training methods to effectively tackle domain shift between MR images. We evaluate our method on two publicly available MRI dataset to address two different types of domain shifts: On the BraTS dataset [11] to mitigate domain shift between high grade and low grade gliomas and on the SCGM dataset [13] to tackle cross institutional domain shift. Through extensive evaluation, we show that our method achieves favorable results on both datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 95–104 (2017)

    Google Scholar 

  3. Eric, T., Judy Hoffman, N.Z., Darrell., T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  4. French, G., Mackiewicz, M., Fisher, M.H.: Self-ensembling for domain adaptation. CoRR abs/1706.05208 (2017)

    Google Scholar 

  5. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2016)

    Google Scholar 

  6. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. CoRR abs/1711.03213 (2017)

    Google Scholar 

  7. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. CoRR abs/1612.08894 (2016). http://arxiv.org/abs/1612.08894

  8. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. CoRR abs/1610.02242 (2016). http://arxiv.org/abs/1610.02242

  9. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. CoRR abs/1603.04779 (2016)

    Google Scholar 

  10. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: On ICML, ICML 2015, vol. 37, pp. 97–105 (2015)

    Google Scholar 

  11. Menze, B., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  12. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. CoRR abs/1811.06042 (2018). http://arxiv.org/abs/1811.06042

  13. Prados, F., et al.: Spinal cord grey matter segmentation challenge. NeuroImage 152, 312–329 (2017)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. arXiv preprint arXiv:1712.02560 (2017)

  16. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. CoRR 1704.01705 (2017)

    Google Scholar 

  17. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. CoRR abs/1607.01719 (2016). http://arxiv.org/abs/1607.01719

  18. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30, pp. 1195–1204 (2017)

    Google Scholar 

  19. Wilson, G., Cook, D.J.: Adversarial transfer learning. arXiv, vol. 1812, p. 02849 (2018)

    Google Scholar 

  20. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andinet Enquobahrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shanis, Z., Gerber, S., Gao, M., Enquobahrie, A. (2019). Intramodality Domain Adaptation Using Self Ensembling and Adversarial Training. In: Wang, Q., et al. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. DART MIL3ID 2019 2019. Lecture Notes in Computer Science(), vol 11795. Springer, Cham. https://doi.org/10.1007/978-3-030-33391-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33391-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33390-4

  • Online ISBN: 978-3-030-33391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics