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Abstract. Learning Interpretable representation in medical applications
is becoming essential for adopting data-driven models into clinical prac-
tice. It has been recently shown that learning a disentangled feature
representation is important for a more compact and explainable repre-
sentation of the data. In this paper, we introduce a novel adversarial vari-
ational autoencoder with a total correlation constraint to enforce inde-
pendence on the latent representation while preserving the reconstruction
fidelity. Our proposed method is validated on a publicly available dataset
showing that the learned disentangled representation is not only inter-
pretable, but also superior to the state-of-the-art methods. We report
a relative improvement of 81.50% in terms of disentanglement, 11.60%
in clustering, and 2% in supervised classification with a few amount of
labeled data.

Keywords: Deep Learning · Unsupervised Learning · Disentangled Rep-
resentation · Interpretability.

1 Introduction

Data-driven models with the help of Deep Learning (DL) are affecting wide areas
of scientific research and the medical domain is no exception in this matter.
However, in healthcare, developing a machine learning algorithm with expert
level performance is important but not enough for the adoption of the algorithm
when the issues of trust and explainability are not taken into consideration [12].
Explainability of a model is approached either by 1) explicitly learning it by
model design or 2) after model design such as using gradient-based localization
[13].

Approaching explainability by model design could be facilitated in a super-
vised manner as in decision trees and rule-based systems or in an unsupervised
manner as in Variational Autoencoder (VAE) [9] or β-Variational Autoencoder
(β-VAE) [6]. In the latter, a lower dimensional representation of the data is
learned and utilized for analyzing the data. The rest of the paper discusses this
type of explainability. Deep learning models extract features from data in order
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(a) (b)

Fig. 1: Comparison of our model to VAE on examples for traversal over the
representation components. Traversal is done between [-3, 3] (a) Examples of
traversal for three images form ISIC 2018. Each row shows reconstructions of
latent traversals across one latent dimension; (b) Example of a smooth transition
over the manifold by changing multiple latent dimensions to go from small lesion
on pale skin (top left image) to bigger horizontal lesion on red skin (bottom right
image). Each column represents one dimension of change. The colored squares
represent the image of the previous column from which the traversal has started
on the current dimension.

to represent it in a compressed high-level representation that suits the appli-
cation. The quality of this representation is crucial for the model performance
and it is argued that disentangled representations would be helpful for having
better control and interpretability over the data [1,6]. A disentangled represen-
tation can be defined as a representation where one latent unit represents one
generative factor of variation in the data while being invariant to other genera-
tive factors [1]. For example, a model trained on a dataset of faces would learn
disentangled latent units that represent independent ground truth generative
factors such as hair color, pose, lighting or skin color. Disentangling as many
explanatory factors as possible is important for a more compact, explainable,
transferable, abstract representation of the data [1].

Most of the previous work regarding disentanglement relied on information
about the number or nature of the ground truth generative factors [7,10]. In
medical applications, the data is complex and a priori knowledge about the gen-
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erative factors is mostly unavailable. Recently, multiple models for unsupervised
disentangled feature learning were proposed [3,6,8,2]. β-VAE [6] is proposed as
a modification on VAE [9] where the parameter β is used to introduce more
emphasis on the KL-Divergence part of the VAE objective. This enforces the
posterior to match the factorized Gaussian prior which constraints the bottle-
neck representation to be factorized while still reconstructing the data. Higher
β values encourage more disentangled representations with a trade-off on the
reconstruction error. In β-Total Correlation VAE (β-TCVAE) [2], the training
is focused on the total correlation part of KL term which is responsible for the
factorized representation. This lowers the trade-off on the reconstruction fidelity
proposed by β-VAE. β-TCVAE is validated on examples from a controlled envi-
ronment with clear factors of generation. This doesn’t represent the complexity
of medical data and should be addressed.

Contributions: In this work, we propose a framework for learning disentangled
representations in medical imaging in an unsupervised manner. To our knowl-
edge, this is the first work that analyzes the strength of unsupervised disentan-
gled feature representations in medical imaging and proposes a framework that is
well suited to medical applications. We propose a novel residual adversarial VAE
with total correlation constraint This enhances the fidelity of the reconstruction
and captures more details that describe better the underlying generative factors.

2 Methodology

We utilize deep generative disentangled representation learning to learn the dis-
tribution of a medical imaging dataset. We then use the learned representation
to generate images while controlling some generative factors. We first show how
disentanglement is approached with β-VAE as a motivation for incorporating β-
TCVAE. We then present our contributions to the disentanglement framework
by utilizing adversarial loss with residual blocks to enhance the disentanglement
and reduce the compromise on the reconstruction. We hypothesize that using
adversarial loss with residual blocks in a disentanglement framework would re-
sult in higher quality representations with more disentanglement in the feature
space.

Let xn ∈ X , n = 1, ..., N be a set of images generated by combinations of K
ground-truth generative factors V = (v1, ..., vK). Our aim is to build an unsuper-
vised generative model that utilizes only the images in X to learn the joint dis-
tribution of the images and the set of latent generative factors z ∼ qφ(z|x) ∈ Rd
allowing us to have better control and interpretability of the latent space. It is
worth mentioning the latent generative factors capture both disentangled and
entangled factors. To realize our aim, we follow the concept of β-VAE in learn-
ing a posterior distribution that could be used to generate images from X . The
posterior representation is approximated by qφ(z|x). The model is built such
that the generative factors V are represented by the posterior bottleneck in a
disentangled fashion.
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In β-VAE, implicit independence is enforced on the posterior to encourage a
disentangled representation. This is done by constraining the posterior to match
a prior q(z). The prior is set to be an isotropic unit Gaussian (p(z) = N (0, I)).
Adding extra pressure on the posterior to match p(z) constraints the capacity
of the bottleneck and pushes it to be factorized [6]. Thus, the objective function
for β-VAE is as follows

argmin
φ,θ

[
−Eqφ(z|x)[logpθ(x|z)]︸ ︷︷ ︸
reconstruction loss Lrec

+βDKL(qφ(z|x)||p(z))
]

(1)

where θ and φ are trainable weights of encoder and decoder respectively, DKL is
the Kullback-Leibler divergence. When β = 1, we get the original VAE loss [9].
For disentanglement, values of β > 1 are typically chosen. Using this formula en-
hances the disentanglement at the cost of reconstruction fidelity. It is suggested
by [2] that the total correlation term within DKL is responsible for the factor-
ized representation. Hence, focusing the training on the total correlation would
result in better disentanglement while having less effect on the reconstruction.
The objective function changes such as DKL is decomposed and β is now only
multiplied by the total correlation term as follows

argmin
φ,θ

[
− Eqφ(z|x)[logpθ(x|z)]+

Iq(z, x) + βDKL

(
qφ(z)||

∏
j

qφ(zj)
)

+
∑
j

DKL

(
qφ(zj)||p(zj)

)
︸ ︷︷ ︸

DKL(qφ(z|x)||p(z)) decomposition (Lprior)

]
(2)

The second term Iq(z, x) is the mutual information between the data and the
latent variable. Penalizing this term reduces the amount of information related
to x that are represented in z. Which in turn could decrease the reconstruc-
tion performance. The third term DKL(q(z)||

∏
j q(zj)) is the total correlation

(TC) which is a generalization of mutual information to more than two vari-
ables. Penalizing TC forces independence in the represented factors. The last
term is referred to as dimension-wise KL and is applied on individual latent di-
mensions. We use β-TCVAE for its good results on disentanglement on various
datasets while having better reconstruction that other disentanglement models
and for the parameter-less approximation of q(z). For more details about the
DKL decomposition and the approximation of q(z) the reader is referred to [2].

To enhance the fidelity of the reconstructions and improve the generative fac-
tors captured by z, we add a discriminator network on top of β-TCVAE model.
The discriminator is trained to decide whether an input image is generated syn-
thetically or sampled from the real data distribution. We employ adversarial
loss scheme for the training. The discriminator in this scenario has to learn
implicitly a rich similarity metric based on features extracted from the images
rather than relying only on pixel-wise similarity. This does not only improve
generated images visually, but also learns a richer representation in the code
z [11]. This is because the pixel-wise loss acts as a content loss while the dis-
criminator loss acts as a style loss [4]. Moreover, we incorporate residual blocks



Learning Interpretable Disentangled Representations using Adversarial VAEs 5

rather than convolutional layers applied in [2]. This is because residual blocks
have shown a better flow of the gradients. This limits the problems related to
vanishing/exploding gradients [5] and is being used in state-of-the-art Genera-
tive Adversarial Nets (GANs) literature [15] for more stable training. We denote
Dis(.;ψ) to the discriminator network described by trainable parameters ψ, x is
a real image sampled from p(x) and x̂ is the reconstructed image from pθ(x|z).
The final objective is

arg min
φ,θ

[Lgen] = arg min
φ,θ

[Lrec + Lprior − log(Dis(x̂))]

arg min
ψ

[Ldisc] = arg min
ψ

[−log(Dis(x))− log(1−Dis(x̂))]
(3)

The model is trained by alternating between Lgen and Ldisc optimization. We
use pixel-wise l2-distance between x and x̂ as Lrec.

3 Experiments

Experimental validation evaluates the proposed framework in two main exper-
iments: First, we compare our proposed method disentanglement performance
to state-of-the-art methods in learning both entangled and disentangled repre-
sentations. We also utilize the learned representations in two use-cases, namely,
unsupervised clustering and supervised classification with a few amounts of la-
bels. In the second experiment, we evaluate the results visually and analyze the
interpretable learned representation.

Dataset: We opt for the publicly available Skin Lesion dataset from ISIC 2018
Challenge [14] to perform our validations. To train our model, we utilize the
dataset of Task 3 which consists of 10k RGB images with 7 types of skin le-
sions capturing 7 pathological generative factors. To evaluate the model against
ground-truth generative factors, i.e. eccentricity, orientation, and size, we utilize
the dataset of Task 2 which consists of 2k images with pixel-wise segmentation.
Note that all images are down-sampled to 64× 64px.

Evaluation metrics: To quantitatively evaluate the disentanglement quality, we
report the Mutual Information Gap (MIG) metric as proposed and suggested
in [2]. As opposed to the disentanglement metric in [6], MIG takes axis-alignment
(one vk is captured by one zj) into consideration, and it is unbiased to hyper-
parameters opposite to [6,8]. MIG measures the mutual information (MI) be-
tween zj and the known generative factor vk, then the difference between the
two highest MIs of a generative factor is calculated, and normalized then by the
entropy of vk. The average MIG is then computed as

MIG =
1

K

K∑
k=1

1

H(vk)

(
I(zj(k) , vk)− max

j 6=j(k)
I(zj , vk)

)
, (4)

where H(·) is the entropy, I(·, ·) is the mutual information. For our experiments,
we set the generative factors as follows:
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1. MIG Pathologies (MIGp): The ground truth classes are used as genera-
tive factors in one vs. all fashion. For instance, K = 7 for the Skin Lesion
dataset. Each generative factor has two possible values in this scenario.

2. MIG Handcrafted Factors (MIGhf): In addition, we handcrafted a few
generative factors which are easily visible in the image space, e.g. geometric
and morphological changes. To do so, the segmentation masks given in Task
2 are utilized. The handcrafted factors are eccentricity, orientation, and size
(i.e K = 3). Each generative factor has two possible values.

In addition, we report the Peak signal-to-noise ratio (PSNR), and Normalized
Mutual Information (NMI), and Accuracy (ACC) to evaluate the reconstruction
error, clustering, and classification, respectively.

Baselines: We compare the proposed model to two representation learning mod-
els. The first is VAE [9] model which does not take disentanglement into account
explicitly. The second model is β-TCVAE [2] which adds constraints on the rep-
resentation to disentangle the components. Further, We employ two variations
of our proposed method with bottleneck residual blocks [5]; 1) without the ad-
versarial loss in Equation 3 denoted as Ours-resnet ; and 2) with the adversarial
loss denoted as Ours-adv.

Implementation details: We implement the same architecture appeared in the
CelebA experiments in [2] for both VAE and β-TCVAE. For our proposed
method, we replace the convolutional layers with bottleneck residual blocks for
both Ours-resnet and Ours-adv, while the additional discriminator network in
Ours-adv has the same architecture of the encoder except for the last layer which
has a single output. All models are trained using Adam optimizer for 100K it-
erations with a minibatch size of 256, and a learning rate of 1e− 4. β and d are
set to 6 and 32, respectively. Note that we employ leakyReLU in our Ours-adv
which has been successfully applied in the adversarial training literature.

Comparison with state-of-the-art: We compare our method with the recent state-
of-the-art methods by reporting the evaluation metrics (cf Table.1). We notice
improvements over the β-TCVAE in terms of disentanglement with a relative
improvement of 81.6% and 161.8% on MIGp and MIGhf , respectively. For re-
construction error, it is expected that VAE would be superior to other models
because there is no extra focus on the prior constraining part of the loss func-
tion which allows reconstruction error to optimize better. However, we notice an
improvement on PSNR compared to β-TCVAE model which compromises re-
construction error for disentanglement. This experiment shows that adding the
bottleneck residual blocks together with adversarial training not only improves
the disentanglement, but also improves the reconstruction quality.

Use-cases: In order to show that the disentangled representation is rather cap-
turing some meaningful generative factors, which might be relevant to the task at
hand. We design two use-cases in both unsupervised and supervised paradigms.
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Table 1: Comparison of various representation learning models.
MIGp% MIGhf% PSNR NMI% ACC%

VAE 5.23 2.74 22.91 9.12 67.88
β-TCVAE 6.92 3.53 20.79 10.66 68.61

Ours-resnet 11.61 5.89 19.42 9.89 69.19
Ours-Adv 12.57 9.24 21.18 11.86 70.02

For the clustering use-case, we utilize the learned representations to fit a Gaus-
sian Mixture Model (GMM) with 7 components and assign a label to each data
point. NMI is then calculated between assigned labels and ground-truth labels.
We report an average of 10 realizations. Regarding the classification use-case,
we utilize the learned representations of a few amounts of labeled data to train
a multi-layer perceptron (MLP) on 10% of the data and evaluate it on the re-
maining 90% of the data. 10-fold stratified cross-validation is performed.

The model gives a relative improvement of 11.6% and 2% on the NMI and
ACC, respectively. This could be attributed to the quality of the learned repre-
sentation where features responsible for the pathologies are captured by disen-
tanglement models as generative factors.

Interpretability: We qualitatively examine the interpretability of the learned
representations by manipulating the latent code. For instance, Fig. 1a shows a
comparison of the traversal between the proposed model and VAE. We notice
that the dimension responsible for changing skin color has some entanglement
with eccentricity and size in the case of VAE. In contrast, we can see in our
proposed model that the size and eccentricity are barely changed when the skin
color dimension is changed. For eccentricity, we notice in the case of VAE that
fewer variations are captured such as the absence of the horizontal elliptic lesions
that are captured with the proposed approach.

In Fig. 1b, we show the possibility of generating images with specific features
by smoothly moving over the manifold of the representations. We show the
transition of a small lesion on pale skin to a big horizontal lesion on reddish skin
by changing multiple latent dimensions responsible for each feature. Having this
control over the representation does not only give the ability to generate images
with specific known features, but also gives an interpretable representation of
the data which can be utilized in many applications.

4 Discussion

In this paper, we introduce a novel adversarial VAE with a total correlation
constraint to enforce disentanglement on the latent representation while pre-
serving the reconstruction fidelity. The proposed framework is evaluated on skin
lesions dataset and shows improvements over other state-of-the-art methods in
terms of disentanglement. The disentangled representations learned by the pro-
posed method has shown remarkable performance in both unsupervised cluster-



8 M.H Sarhan et al.

ing and supervised classification. We believe that our work would pave the way
for other researchers to further investigate this interesting direction of research.
One potential direction is utilizing the control over the generative factors for
data augmentation.
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