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Abstract. We approach the task of computing a carefully synchroniz-
ing word of minimum length for a given partial deterministic automaton,
encoding the problem as an instance of SAT and invoking a SAT solver.
Our experimental results demonstrate that this approach gives satisfac-
tory results for automata with up to 100 states even if very modest
computational resources are used.
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1 Introduction

A nondeterministic finite automaton (NFA) is a triple 〈Q,Σ, δ〉, where
Q and Σ are finite non-empty sets called the state set and the input

alphabet respectively, and δ is a subset of Q × Σ × Q. The elements of
Q and Σ are called states and letters, respectively, and δ is referred to
as the transition relation1. For each pair (q, a) ∈ Q × Σ, we denote by
δ(q, a) the subset {q′ | (q, a, q′) ∈ δ} of Q; this way δ can be viewed as
a function Q× Σ → P(Q), where P(Q) is the power set of Q. When we
treat δ as a function, we refer to it as the transition function.

Let Σ∗ stand for the collection of all finite words over the alphabet Σ,
including the empty word ε. The transition function extends to a function
P(Q) × Σ∗ → P(Q), still denoted δ, in the following inductive way: for
every subset S ⊆ Q and every word w ∈ Σ∗, we set

δ(S,w) :=

{

S if w = ε,
⋃

q∈δ(S,v) δ(q, a) if w = va with v ∈ Σ∗ and a ∈ Σ.

⋆ Supported by the Ministry of Science and Higher Education of the Russian Feder-
ation, projects no. 1.580.2016 and 1.3253.2017, and the Competitiveness Enhance-
ment Program of Ural Federal University.

1 The conventional concept of an NFA includes distinguishing two non-empty subsets
of Q consisting of initial and final states. As these play no role in our considerations,
the above simplified definition well suffices for the purpose of this paper.
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(Here the set δ(S, v) is defined by the induction assumption since v is
shorter than w.) We say that a word w ∈ Σ∗ is undefined at a state q ∈ Q

if the set δ(q, w) is empty; otherwise w is said to be defined at q.

When we deal with a fixed NFA, we suppress the sign of the transition
relation, introducing the NFA as the pair 〈Q,Σ〉 rather than the triple
〈Q,Σ, δ〉 and writing q.w for δ(q, w) and S.w for δ(S,w).

A partial (respectively, complete) deterministic automaton is an NFA
〈Q,Σ〉 such that |q.a| ≤ 1 (respectively, |q.a| = 1) for all (q, a) ∈ Q× Σ.
We use the acronyms PFA and CFA for the expressions ‘partial determin-
istic automaton’ and ‘complete deterministic automaton’, respectively.

A CFA A = 〈Q,Σ〉 is called synchronizing if there exists a word
w ∈ Σ∗ whose action leaves the automaton in one particular state no
matter at which state in Q it is applied: q.w = q′.w for all q, q′ ∈ Q. Any
w with this property is said to be a synchronizing word for the automaton.

Synchronizing automata serve as simple yet adequate models of error-
resistant systems in many applied areas (system and protocol testing, in-
formation coding, robotics). At the same time, synchronizing automata
surprisingly arise in some parts of pure mathematics and theoretical com-
puter science (symbolic dynamics, theory of substitution systems, formal
language theory). We refer to the survey [37] and the chapter [18] of the
forthcoming ‘Handbook of Automata Theory’ for a discussion of synchro-
nizing automata as well as their diverse connections and applications.
From both applied and theoretical viewpoints, the key question is to find
the optimal, i.e., shortest reset word for a given synchronizing automa-
ton. Under standard assumptions of complexity theory, this optimization
question is known to be computationally hard; see [18, Section 2] for a
summary of various hardness results in the area. As it is quite common
for hard problems of applied importance, there have been many attempts
to develop practical approaches to the question. These approaches have
been based on certain heuristics [15,1,16] and/or popular techniques, in-
cluding (but not limiting to) binary decision diagrams [27], genetic and
evolutionary algorithms [30,17], satisfiability solvers [36], answer set pro-
gramming [10], hierarchical classifiers [28], and machine learning [29].

The present authors [35,34] have initiated an extension to the realm
of NFAs of the approach of [36]. Here we consider a more restricted class,
namely, that of PFAs, where studying synchronization issues appears to
be much better motivated. While we follow the general strategy of and re-
use some technical tricks from [35,34], our present constructions heavily
depend on the specifics of partial automata and have not been obtained
via specializing the constructions of those earlier papers.



The rest of the paper is structured as follows. In Sect. 2 we describe
and motivate the version of PFA synchronization that we have studied.
In Sect. 3 we first outline the approach based on satisfiability solvers and
then explain in detail how we encode PFAs and their synchronization
problems as instances of the Boolean satisfiability problem. In Sect. 4 we
provide samples of our experimental results and conclude in Sect. 5 with
a brief discussion of the future work.

We have tried to make the paper, to a reasonable extent, self-contained,
except for a few discussions that involve some basic concepts of computa-
tional complexity theory. These concepts can be found, e.g., in the early
chapters of the textbook [26].

2 Synchonization of NFAs and PFAs

The concept of synchronization of CFAs as defined in Sect. 1 was extended
to NFAs in several non-equivalent ways. The following three nowadays
popular versions were suggested and analyzed in [11] in 1999 (although,
in an implicit form, some of them appeared in the literature much earlier,
see, e.g., [4,9]). For i ∈ {1, 2, 3}, an NFA A = 〈Q,Σ〉 is called Di-syn-
chronizing if there exists a word w ∈ Σ∗ that satisfies the condition (Di)
from the list below:

(D1): |q.w| = |Q.w| = 1 for all q ∈ Q;
(D2): q.w = Q.w for all q ∈ Q;
(D3):

⋂

q∈Q q.w 6= ∅.

Any word satisfying (Di) is called Di-synchronizing for A . The definition
readily yields the following properties of Di-synchronizing words:

Lemma 1 a) A D1- or D3-synchronizing word is defined at each state.

b) A D2-synchronizing word is either defined at each state or undefined

at each state.

c) Every D1-synchronizing word is both D2- and D3-synchronizing;

every D2-synchronizing word defined at each state is D3-synchronizing.

In [35] we adapted the approach based on satisfiability solvers to find-
ingD3-synchronizing words of minimum length for NFAs. The first-named
author used a similar method in the cases of D1- and D2-synchronization;
results related to D2-synchronization were reported in [34].

Yet another version of synchronization for NFAs was introduced in [13]
and systematically studied in [21,22,23,24,25], which terminology we adopt.
An NFA A = 〈Q,Σ〉 is called carefully synchronizing if there is a word



w = a1 · · · aℓ, with a1, . . . , aℓ ∈ Σ, that satisfies the condition (C), being
the conjunction of (C1)–(C3) below:

(C1): the letter a1 is defined at every state in Q;

(C2): the letter at with 1 < t ≤ ℓ is defined at every state in Q.a1 · · · at−1,

(C3): |Q.w| = 1.

Any w satisfying (C) is called a carefully synchronizing word (c.s.w., for
short) for A . Thus, when a c.s.w. is applied at any state in Q, no unde-
fined transition occurs during the course of application. Every carefully
synchronizing word is clearly D1-synchronizing but the converse is not
true in general; moreover, a D1-synchronizing NFA may admit no c.s.w.

In this paper we focus on carefully synchronizing words for PFAs.
There are several theoretical and practical reasons for this.

On the theoretical side, it is easy to see that each of the conditions
(C), (D1), (D3) leads to the same notion when restricted to PFAs. As
for D2-synchronization, if a word w is D2-synchronizing for a PFA A ,
then w carefully synchronizes A whenever w is defined at each state.
Otherwise w is nowhere defined by Lemma 1b, and such ‘annihilating’
words are nothing but usual synchronizing words for the CFA obtained
from A by adding a new sink state and making all transitions undefined
in A lead to this sink state. Synchronization of CFAs with a sink state is
relatively well understood (see [33]), and therefore, we may conclude that
D2-synchronization also reduces to careful synchronization in the realm
of PFAs. On the other hand, there exists a simple transformation that
converts every NFA A = 〈Q,Σ〉 into a PFA B = 〈Q,Σ′〉 such that A is
D3-synchronizing if and only if so is B and the minimum lengths of D3-
synchronizing words for A and B are equal; see [12, Lemma 8.3.8] and
[14, Lemma 3]. These observations demonstrate that from the viewpoint
of optimal synchronization, studying carefully synchronizing words for
PFAs may provide both lower and upper bounds applicable to arbitrary
NFAs and all aforementioned kinds of synchronization.

Probably even more important is the fact that careful synchronization
of PFAs is relevant in numerous applications. Due to the page limit, we
mention only two examples here.

In industrial robotics, synchronizing automata are widely used to de-
sign feeders, sorters, and orienters that work with flows of certain objects
carried by a conveyer. The goal is achieved by making the flow encounter
passive obstacles placed appropriately along the conveyer belt; see [19,20]
for the origin of this automata approach and [2] for an illustrative exam-
ple. Now imagine that the objects to be oriented or sorted have a fragile



side that could be damaged if hitting an obstacle. In order to prevent
any damage, we have to forbid ‘dangerous’ transitions in the automaton
modelling the orienter/sorter so that the automaton becomes partial and
the obstacle sequences must correspond to carefully synchronizing words.
(Actually, the term ‘careful synchronization’ has been selected with this
application in mind.)

Our second example relates to so-called synchronized codes2. Recall
that a prefix code over a finite alphabet Σ is a set X of words in Σ∗

such that no word of X is a prefix of another word of X. Decoding of a
finite prefix code X over Σ can be implemented by a finite deterministic
automaton AX whose state Q is the set of all proper prefixes of the words
in X (including the empty word ε) and whose transitions are defined as
follows: for q ∈ Q and a ∈ Σ,

q.a =











qa if qa is a proper prefix of a word of X,

ε if qa ∈ X,

undefined otherwise.

In general, AX is a PFA (it is complete if and only if the code X is
not contained in another prefix code over Σ). It can be shown that if
AX is carefully synchronizing, the code X has a very useful property:
whenever a loss of synchronization between the decoder and the coder
occurs (because of a channel error), it suffices to transmit a c.s.w. w of
AX such that w sends all states in Q to the state ε to ensure that the
following symbols will be decoded correctly.

We may conclude that the problems of determining whether or not
a given PFA is carefully synchronizing and of finding its shortest care-
fully synchronizing words are both natural and important. The bad news
is that these problems turn out to be quite difficult: it is known that
the first problem is PSPACE-complete and that the minimum length of
carefully synchronizing words for carefully synchronizing PFAs can be
exponential as a function of the number of states. (These results were
found in [31,32] and later rediscovered and strengthened in [23].) Thus,
one has to use some tools that have proved to be efficient for dealing with
computationally hard problems. As mentioned in Section 1, in this paper
we make an attempt to employ a satisfiability solver as such a tool.

2 We refer the reader to [3, Chapters 3 and 10] for a detailed account of profound
connections between codes and automata.



3 Encoding

For completeness, recall the formulation of the Boolean satisfiability prob-
lem (SAT). An instance of SAT is a pair (V,C), where V is a set of Boolean
variables and C is a collection of clauses over V . (A clause over V is a dis-
junction of literals and a literal is either a variable in V or the negation of
a variable in V .) Any truth assignment on V , i.e., any map ϕ : V → {0, 1},
extends to a map C → {0, 1} (still denoted by ϕ) via the usual rules of
propositional calculus: ϕ(¬x) = 1 − ϕ(x), ϕ(x ∨ y) = max{ϕ(x), ϕ(y)}.
A truth assignment ϕ satisfies C if ϕ(c) = 1 for all c ∈ C. The answer
to an instance (V,C) is YES if (V,C) has a satisfying assignment (i.e., a
truth assignment on V that satisfies C) and NO otherwise.

By Cook’s classic theorem (see, e.g., [26, Theorem 8.2]), SAT is NP-
complete, and by the very definition of NP-completeness, every problem
in NP reduces to SAT. On the other hand, over the last score or so,
many efficient SAT-solvers, i.e., specialized programs designed to solve
instances of SAT have been developed. Modern SAT solvers can solve
instances with hundreds of thousands of variables and millions of clauses
within a few minutes. Due to this progress, the following approach to
computationally hard problems has become quite popular nowadays: one
encodes instances of such problems into instances of SAT that are then
fed to a SAT-solver3. It is exactly the strategy that we want to apply.

We start with the following problem:

CSW (the existence of a c.s.w. of a given length):
Input: a PFA A and a positive integer ℓ (given in unary);
Output: YES if A has a c.s.w. of length ℓ;

NO otherwise.

We have to assume that the integer ℓ is given in unary because with ℓ

given in binary, a polynomial time reduction from CSW to SAT is hardly
possible. (Indeed, it easily follows from [23] that the version of CSW in
which the integer parameter is given in binary is PSPACE-hard, and the
existence of a polynomial reduction from a PSPACE-hard problem to
SAT would imply that the polynomial hierarchy collapses at level 1.) In
contrast, the version of CSW with the unary integer parameter is easily
seen to belong to NP: given an instance (A = 〈Q,Σ〉, ℓ) of CSW in this
setting, guessing a word w ∈ Σ∗ of length ℓ is legitimate. Then one just
checks whether or not w is carefully synchronizing for A , and time spent
for this check is clearly polynomial in the size of (A , ℓ).

3 We refer the reader to the survey [8] a detailed discussion of the approach and
examples of its successful applications in various areas.



Now, given an arbitrary instance (A , ℓ) of CSW, we construct an in-
stance (V,C) of SAT such that the answer to (A , ℓ) is YES if and only
if so is the answer to (V,C). In the following presentation of our encod-
ing, precise definitions and statements are interwoven with less formal
comments explaining the ‘physical’ meaning of variables and clauses.

So, take a PFA A = 〈Q,Σ〉 and an integer ℓ > 0. Denote the sizes of
Q and Σ by n and m respectively, and fix some numbering of these sets
so that Q = {q1, . . . , qn} and Σ = {a1, . . . , am}.

We start with introducing the variables used in the instance (V,C) of
SAT that encodes (A , ℓ). The set V consists of two sorts of variables: mℓ

letter variables xi,t with 1 ≤ i ≤ m, 1 ≤ t ≤ ℓ, and n(ℓ+1) state variables

yj,t with 1 ≤ j ≤ n, 0 ≤ t ≤ ℓ. We use the letter variables to encode the
letters of a hypothetical c.s.w. w of length ℓ: namely, we want the value
of the variable xi,t to be 1 if and only if the t-th letter of w is ai. The
intended meaning of the state variables is as follows: we want the value of
the variable yj,t to be 1 whenever the state qj belongs to the image of Q
under the action of the prefix of w of length t, in which situation we say
that qj is active after t steps. We see that the total number of variables
in V is mℓ+ n(ℓ+ 1) = (m+ n)ℓ+ n.

Now we turn to constructing the set of clauses C. It consists of four
groups. The group I of initial clauses contains n one-literal clauses yj,0,
1 ≤ j ≤ n, and expresses the fact that all states are active after 0 steps.

For each t = 1, . . . , ℓ, the group L of letter clauses includes the clauses

x1,t ∨ · · · ∨ xm,t, ¬xr,t ∨ ¬xs,t, where 1 ≤ r < s ≤ m. (1)

Clearly, the clauses (1) express the fact that the t-th position of our
hypothetical c.s.w. w is occupied by exactly one letter in Σ. Altogether,

L contains ℓ
(

m(m−1)
2 + 1

)

clauses.

For each t = 1, . . . , ℓ and each triple (qj , ai, qk) in the transition rela-
tion of A , the group T of transition clauses includes the clause

¬yj,t−1 ∨ ¬xi,t ∨ yk,t. (2)

Invoking the basic laws of propositional logic, one sees that the clause (2)
is equivalent to the implication yj,t−1&xi,t → yk,t, that is, (2) expresses
the fact that if the state qj has been active after t − 1 steps and ai is
the t-th letter of w, then the state qk = qj.ai becomes active after t

steps. Further, for each t = 1, . . . , ℓ and each pair (qj, ai) such that ai is
undefined at qj in A , we add to T the clause

¬yj,t−1 ∨ ¬xi,t. (3)



The clause is equivalent to the implication yj,t−1 → ¬xi,t, and thus, it
expresses the requirement that the letter ai should not be occur in the
t-th position of w if qj has been active after t − 1 steps. Obviously, this
corresponds to the conditions (C1) (for t = 0) and (C2) (for t > 0) in the
definition of careful synchronization. For each t = 1, . . . , ℓ and each pair
(qj, ai) ∈ Q×Σ, exactly one of the clauses (2) or (3) occurs in T , whence
T consists of ℓmn clauses.

The final group S of of synchronization clauses includes the clauses

¬yr,ℓ ∨ ¬ys,ℓ, where 1 ≤ r < s ≤ n. (4)

The clauses (4) express the requirement that at most one state remains
active when the action of the word w is completed, which corresponds
to the condition (C3) from the definition of careful synchronization. The

group S contains n(n−1)
2 clauses.

Summing up, the number of clauses in C := I ∪ L ∪ T ∪ S is

n+ ℓ
(

m(m−1)
2 + 1

)

+ ℓmn+ n(n−1)
2 =

ℓ
(

m(m−1)
2 +mn+ 1

)

+ n(n+1)
2 . (5)

In comparison with encodings used in our earlier papers [35,34], the en-
coding suggested here produces much smaller SAT instances. Since in the
applications the size of the input alphabet is a (usually small) constant,
the leading term in (5) is Θ(ℓn) while the restriction to PFAs of the
encodings from [35,34] has Θ(ℓn2) clauses.

Theorem 2 A PFA A has a c.s.w. of length ℓ if and only if the instance

(V,C) of SAT constructed above is satisfiable. Moreover, the carefully

synchronizing words of length ℓ for A are in a 1-1 correspondence with

the restrictions of satisfying assignments of (V,C) to the letter variables.

Proof. Suppose that A has a c.s.w. of length ℓ. We fix such a word w and
denote by wt its prefix of length t = 1, . . . , ℓ. Define a truth assignment
ϕ : V → {0, 1} as follows: for 1 ≤ i ≤ m, 0 ≤ j ≤ n, 1 ≤ t ≤ ℓ, let

ϕ(xi,t) :=

{

1 if the t-th letter of w is ai,

0 otherwise;
(6)

ϕ(yj,0) := 1; (7)

ϕ(yj,t) :=

{

1 if the state qj lies in Q.wt,

0 otherwise.
(8)



In view of (6) and (7), ϕ satisfies all clauses in L and respectively I. As
wℓ = w and |Q.w| = 1, we see that (8) ensures that ϕ satisfies all clauses
in S. It remains to analyze the clauses in T . For each fixed t = 1, . . . , ℓ,
these clauses are in a 1-1 correspondence with the pairs in Q×Σ. We fix
such a pair (qj, ai), denote the clause corresponding to (qj, ai) by c and
consider three cases.

Case 1: the letter ai is not the t-th letter of w. In this case ϕ(xi,t) = 0
by (6), and hence, ϕ(c) = 1 since the literal ¬xi,t occurs in c, indepen-
dently of c having the form (2) or (3).

Case 2: the letter ai is the t-th letter of w but it is undefined at qj.
In this case the clause c must be of the form (3). Observe that t > 1 in
this case since the first letter of the c.s.w. w must be defined at each state
in Q. Moreover, the state qj cannot belong to the set Q.wt−1 because ai
must be defined at each state in this state. Hence ϕ(yj,t−1) = 0 by (8),
and ϕ(c) = 1 since the literal ¬yj,t−1 occurs in c.

Case 3: the letter ai is the t-th letter of w and it is defined at qj.
In this case the clause c must be of the form (2), in which the literal
yk,t corresponds to the state qk = qj.ai. If the state qj does not belong
to the set Q.wt−1, then as in the previous case, we have ϕ(yj,t−1) = 0
and ϕ(c) = 1. If qj belongs to Q.wt−1, then the state qk belongs to the
set (Q.wt−1).ai = Q.wt, whence ϕ(yk,t) = 1 by (8). We conclude that
ϕ(c) = 1 since the literal yk,t occurs in c.

Conversely, suppose that ϕ : V → {0, 1} is a satisfying assignment
for (V,C). Since ϕ satisfies the clauses in L, for each t = 1, . . . , ℓ, there
exists a unique i ∈ {1, . . . ,m} such that ϕ(xi,t) = 1. This defines a map
χ : {1, . . . , ℓ} → {1, . . . ,m}. Let w := aχ(1) · · · aχ(ℓ). We aim to show that
w is a c.s.w. for A , i.e., to verify that w fulfils the conditions (C1)–(C3)
from the definition of a c.s.w. For this, we first prove two auxiliary claims.
Recall that a state is said to be active after t steps if it lies in Q.wt, where,
as above, wt is the length t prefix of the word w. (By the length 0 prefix
we understand the empty word ε.)

Claim 1. For each t = 0, 1, . . . , ℓ, there are states active after t steps.

Claim 2. If a state qk is active after t steps, then ϕ(yk,t) = 1.

We prove both claims simultaneously by induction on t. The induction
basis t = 0 is guaranteed by the fact that all states are active after 0 steps
and ϕ satisfies the clauses in I. Now suppose that t > 0 and there are
states active after t− 1 steps. Let qr be such a state. Then ϕ(yr,t−1) = 1
by the induction assumption. Let i := χ(t), that is, ai is the t-th letter of
the word w. Then ϕ(xi,t) = 1, whence ϕ cannot satisfy the clause of the
form (3) with j = r. Hence this clause cannot appear in T as ϕ satisfies



the clauses in T . This means that the letter ai is defined at qr in A , and
the state qs := qr.ai is active after t steps. Claim 1 is proved.

Now let qk be an arbitrary state that is active after t > 0 steps. Since
ai is the t-th letter of w, we have Q.wt = (Q.wt−1).ai, whence qk = qj.ai
for same qj ∈ Q.wt−1. Therefore the clause (2) occurs in T , and thus,
it is satisfied by ϕ. Since qj is active after t − 1 steps, ϕ(yj,t−1) = 1 by
the induction assumption; besides that, ϕ(xi,t) = 1. We conclude that
in order to satisfy (2), the assignment ϕ must fulfil ϕ(yk,t) = 1. This
completes the proof of Claim 2.

We turn to prove that the word w fulfils (C1) and (C2). This amounts
to verifying that for each t = 1, . . . , ℓ, the t-th letter of the word w is
defined at every state qj that is active after t − 1 steps. Let, as above,
ai stand for the t-th letter of w. If aj were undefined at qj, then by the
definition of the set T of transition clauses, this set would include the
corresponding clause (3). However, ϕ(xi,t) = 1 by the construction of w
and ϕ(yj,t−1) = 1 by Claim 2. Hence ϕ does not satisfy this clause while
the clauses from T are satisfied by ϕ, a contradiction.

Finally, consider (C3). By Claim 1, some state is active after ℓ steps.
On the other hand, the assignment ϕ satisfies the clauses in S, which
means that ϕ(yj,ℓ) = 1 for at most one index j ∈ {1, . . . , n}. By Claim 2
this implies that at most one state is active after ℓ steps. We conclude
that exactly one state is active after ℓ steps, that is, |Q.w| = 1. ⊓⊔

4 Experimental results

We have successfully applied the encoding constructed in Sect. 3 to solve
CSW instances with the help of a SAT-solver. As in [36,10,35,34], we have
used MiniSat 2.2.0 [6,7]. In order to find a c.s.w. of minimum length for a
given PFA A , we have considered CSW instances (A , ℓ) with fixed A and
performed binary search on ℓ. Even though our encoding is different form
those we used in [35,34], it shares with them the following useful feature:
when presented in DIMACS CNF format, the ‘primary’ SAT instance
that encodes the CSW instance (A , 1) can be easily scaled to the SAT
instances that encode the CSW instances (A , ℓ) with any value of ℓ. Due
to this feature, one radically reduces time needed to prepare the input
data for the SAT-solver. We refer the reader to [34, Sect. 3] for a detailed
explanation of the trick and an illustrative example.

We implemented the algorithm outlined above in C++ and compiled
with GCC 4.9.2. In our experiments we used a personal computer with



an Intel(R) Core(TM) i5-2520M processor with 2.5 GHz CPU and 4GB of
RAM. The code can be found at https://github.com/hananshabana/SynchronizationChecker.

As a sample of our experimental findings, we present here our results
on synchronization of PFAs with a unique undefined transition. Observe
that the problem of deciding whether or not a given PFA is carefully
synchronizing remains PSPACE-complete even if restricted to this rather
special case [23]. We considered random PFAs with n ≤ 100 states and
two input letters. The condition (C1) in the definition of a carefully syn-
chronizing PFA implies that such a PFA must have an everywhere defined
letter. We denoted this letter by a and the other letter, called b, was cho-
sen to be undefined at a unique state. Further, it is easy to see that for
a PFA 〈Q, {a, b}〉 with a, b so chosen to be carefully synchronizing, it is
necessary that |Q.a| < |Q|. Therefore, we fixed a state qa ∈ Q and then
selected a uniformly at random from all nn−1 maps Q → Q \ {qa}. Sim-
ilarly, to ensure there is a unique undefined transition with b, we fixed a
state qb ∈ Q (not necessarily different from qa) and then selected b uni-
formly at random from all (n − 1)n maps Q \ {qb} → Q. For each fixed
n, we generated up to 1000 random PFAs this way and calculated the
average length ℓ(n) of their shortest carefully synchronizing words. We
used the least squares method to find a function that best reflects how
ℓ(n) depends on n, and it turned out that our results are reasonably well
approximated by the following expression:

ℓ(n) ≈ 3.92 + 0.49n − 0.005n2 + 0.000024n3.
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The next graph shows the relation between the relative standard de-
viation of our datasets and the number of states. We see that the relative
standard deviation gradually decreases as the number of states grows.
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We performed similar experiments with random PFAs that have two
or three undefined transition. We also tested our algorithm on PFAs from
the series Pn suggested in [5]. The state set of Pn is {1, 2, . . . , n}, n ≥ 3,
on which the input letters a and b act as follows:

q.a :=

{

q + 1 if q = 1, 2,

q if q = 3, . . . , n;
q.b :=











undefined if q = 1,

q + 1 if q = 2, . . . , n − 1,

1 if q = n.

We examined all automata Pn with n = 4, 5, . . . , 11, and for each of them,
our result matched the theoretical value predicted by [5, Theorem 3]. The
time consumed ranges from 0.301 sec for n = 4 to 4303 sec for n = 11.
Observe that in the latter case the shortest c.s.w. has length 116 so that
honest binary search started with (P11, 1) required 11 iterations.

We made also a comparison with the only approach to computing
carefully synchronizing words of minimum length that we had found in
the literature, namely, the approach based on partial power automata.
Given a PFA A = 〈Q,Σ〉, its partial power automaton P(A ) has the
subsets of Q as the states, the same input alphabet Σ, and the transition
function defined as follows: for each a ∈ Σ and each P ⊆ Q,

P.a :=

{

{q.a | q ∈ P} provided q.a is defined for all q ∈ P ,

undefined otherwise.



It is easy to see that w ∈ Σ∗ is a c.s.w. of minimum length for A if and
only if w labels a minimum length path in P(A ) starting at Q and ending
at a singleton. Such a path can be found by breadth-first search in the
underlying digraph of P(A ).

The result of the comparison are presented in the picture below. In this
experiment we had to restrict to PFAs with at most 16 states since beyond
this number of states, our implementation of the method based on partial
power automata could not complete the computation due to memory
restrictions (recall that we used rather modest computational resources).
However, we think that the exhibited data suffice to demonstrate that
the approach based on SAT-solvers shows a by far better performance.
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5 Conclusion and future work

We have presented an attempt to approach the problem of computing a
c.s.w. of minimum length for a given PFA via the SAT-solver method.
For this, we have developed a new encoding, which, in comparison with
encodings used in our earlier papers [35,34], requires a more sophisticated
proof but leads to more economic SAT instances.

We plan to continue our experiments. In particular, it is interesting to
compare the minimum lengths of a synchronizing word for a synchronizing
DFA and of carefully synchronizing words for PFAs that can be obtained
from the DFA by removing one or more of its transitions.

We also plan to extend the SAT-solver approach to so-called exact

synchronization of PFAs which is of interest for certain applications.



References
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9. Goralčk, P., Hedrĺın, Z., Koubek, V.; Ryšlinková, J.: A game of composing binary
relations. RAIRO Inform. Théor. 16(4), 365-369 (1982)
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