Skip to main content

Reference Architecture of an Autonomous Agent for Cyber Defense of Complex Military Systems

  • Chapter
  • First Online:
Adaptive Autonomous Secure Cyber Systems

Abstract

Military strategies will shortly make intensive use of autonomous systems while the Internet of Battle Things (IoBT) will grow military systems’ complexity to new heights. The cyber defense of the battlespace will then become arduous for humans, if not impossible, due to disconnections, the difficulty of supervising masses of interconnected devices, and the scarcity of cyber defense competences on the battleground. An autonomous intelligent cyber defense of the battlefield becomes necessary in such a context. In response to such needs, this chapter presents and illustrates the rationale, concept and future research directions of (Multiple) Autonomous Intelligent Cyber defense Agents, (M)AICA, and NATO’s initial AICA Reference Architecture, AICARA.

This chapter reuses portions of an earlier paper: Theron, P., et al, “Towards an Active, Autonomous and Intelligent Cyber Defense of Military Systems: the NATO AICA Reference Architecture”, Proceedings of the International Conference on Military Communications and Information Systems Warsaw, Poland, 22nd - 23rd May 2018; © 2018 IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosin, M. et al., 2016. SANA: Secure and Scalable Aggregate Network Attestation. New York, NY, USA, ACM, pp. 731–742.

    Google Scholar 

  2. Baumann, A., Peinado, M. & Hunt, G., 2015. Shielding Applications from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst., 8, Volume 33, pp. 8:1–8:26.

    Google Scholar 

  3. Blakely, B. & Theron, P., 2018. Decision flow-based Agent Action Planning. Prague, 18–20 October 2017: https://export.arxiv.org/pdf/1804.07646.

  4. Booch, G., 1991. Object-Oriented Analysis and Design with Applications. The Benjamin Cummings Publishing Company ed. San Francisco, CA: Pearson Education.

    Google Scholar 

  5. Boulanin, V. & Verbruggen, M., 2017. Mapping the development of autonomy in weapon systems, Solna, Sweden, available at https://www.sipri.org/publications/2017/other-publications/mapping-development-autonomy-weapon-systems: SIPRI.

  6. Bowen, B. M., Hershkop, S., Keromytis, A. D. & Stolfo, S. J., 2009. Baiting Inside Attackers Using Decoy Documents. s.l., Springer, Berlin, Heidelberg, pp. 51–70.

    Google Scholar 

  7. Carrasco, A. et al., 2010. Multi-agent and embedded system technologies applied to improve the management of power systems. JDCTA, 4(1), pp. 79–85.

    Google Scholar 

  8. Chen, B. & Cheng, H. H., 2010. A review of the applications of agent technology in traffic and transportation systems. Trans. Intell. Transport. Sys., 11(2), pp. 485–497.

    Google Scholar 

  9. De Gaspari, F., Jajodia, S., Mancini, L. V. & Panico, A., 2016. AHEAD: A New Architecture for Active Defense, Vienna, Austria: SafeConfig’16, October 24 2016.

    Google Scholar 

  10. Defense Science Board, 2012. Task Force Report: The Role of Autonomy in DoD Systems, Washington, D.C.: Office of the Under Secretary of Defense for Acquisition, Technology and Logistics.

    Google Scholar 

  11. Defense Science Board, 2016. Summer Study on Autonomy, Washington, D.C.: Office of the Under Secretary of Defense for Acquisition, Technology and Logistics.

    Google Scholar 

  12. Di Pietro, R., Mancini, L. V. & Mei, A., 2003. Random Key-assignment for Secure Wireless Sensor Networks. New York, NY, USA, ACM, pp. 62–71.

    Google Scholar 

  13. Di Pietro, R., Mancini, L. V. & Mei, A., 2006. Energy Efficient Node-to-node Authentication and Communication Confidentiality in Wireless Sensor Networks. Wireless Networks, 11, Volume 12, pp. 709–721.

    Google Scholar 

  14. Disso, J. P., Jones, K. & Bailey, S., 2013. A Plausible Solution to SCADA Security Honeypot Systems. IEEE, Eighth International Conference on Broadband, Wireless Computing, Communication and Applications, pp. 443–448.

    Google Scholar 

  15. Eldefrawy, K., Francillon, A., Perito, D. & Tsudik, G., 2012. SMART: Secure and Minimal Architecture for (Establishing a Dynamic) Root of Trust. 19th Annual Network and Distributed System Security Symposium, February 5–8 ed. San Diego, CA: NDSS 2012.

    Google Scholar 

  16. Elmenreich, W., 2003. Intelligent methods for embedded systems. In: J. 2. Vienna University of Technology 2003, ed. Proceedings of the First Workshop on Intelligent Solutions in Embedded Systems. Austria: Vienna: Vienna University of Technology, pp. 3–11.

    Google Scholar 

  17. Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994. Design patterns: elements of reusable object-oriented software. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  18. Hofmann, O. S. et al., 2013. InkTag: Secure Applications on an Untrusted Operating System. New York, NY, USA, ACM, pp. 265–278.

    Google Scholar 

  19. Huang, H.-P., Liang, C.-C. & Lin, C.-W., 2001. Construction and soccer dynamics analysis for an integrated multi-agent soccer robot system. Natl. Sci. Counc. ROC(A), Volume 25, pp. 84–93.

    Google Scholar 

  20. Jamont, J.-P. & Occello, M., 2011. A framework to simulate and support the design of distributed automation and decentralized control systems: Application to control of indoor building comfort. In: IEEE Symposium on Computational Intelligence in Control and Automation. Paris, France: IEEE, pp. 80–87.

    Google Scholar 

  21. Jamont, J.-P., Occello, M. & Lagrèze, A., 2010. A multiagent approach to manage communication in wireless instrumentation systems. Measurement, 43(4), pp. 489–503.

    Google Scholar 

  22. Kott, A. et al., 2019. Autonomous Intelligent Cyber-defense Agent (AICA) Reference Architecture, Release 2.0, Adelphi, MD: US Army Research Laboratory, ARL SR-0421, September 2019, available from https://arxiv.org/abs/1803.10664.

  23. LeBlanc, B., Losiewicz, P. & Hourlier, S., 2017. A Program for effective and secure operations by Autonomous Agents and Human Operators in communications constrained tactical environments. Prague: NATO IST-152 workshop.

    Google Scholar 

  24. Lin, J. & Singer, P. W., 2014. University Tests Long-Range Unmanned Mini Sub. [Online] Available at: https://www.popsci.com/blog-network/eastern-arsenal/not-shark-robot-chinese-university-tests-long-range-unmanned-mini-sub [Accessed 11 May 2018].

  25. McArthur, S. D. et al., 2007. Multi-Agent Systems for Power Engineering Applications - Part I: Concepts, Approaches, and Technical Challenges. IEEE TRANSACTIONS ON POWER SYSTEMS, 22(4), pp. 1743–1752.

    Article  Google Scholar 

  26. Muller, J.-P., 2004. Emergence of collective behaviour and problem solving. In: A. Omicini, P. Petta & J. Pitt, eds. Engineering Societies in the Agents World IV. volume 3071: Lecture Notes in Computer Science, pp. 1–20.

    Google Scholar 

  27. NAP, 2012. Intelligent Human-Machine Collaboration: Summary of a Workshop, available at http://nap.edu/13479: National Academies Press.

  28. NAP, 2014. Autonomy Research for Civil Aviation: Toward a New Era of Flight, available at http://nap.edu/18815: National Academies Press.

  29. NAP, 2016. Protection of Transportation Infrastructure from Cyber Attacks: A Primer, Available at http://nap.edu/23516: National Academies Press.

  30. Nwana, H. S., 1996. Software agents: An overview. The knowledge engineering review, 11(3), pp. 205–244.

    Article  Google Scholar 

  31. Papernot, N. et al., 2016. Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks. IEEE, 37th IEEE Symposium on Security & Privacy, pp. 582–597.

    Google Scholar 

  32. Pěchouček, M., Jakob, M. & Novák, P., 2010. Towards Simulation-Aided Design of Multi-Agent Systems. In: R. Collier, J. Dix & P. Novák, eds. Programming Multi-Agent Systems. Toronto, ON, Canada: Springer, 8th InternationalWorkshop, ProMAS 2010, 11 May 2010, Revised Selected Papers, pp. 3–21.

    Google Scholar 

  33. Pechoucek, M. & Marík, V., 2008. Industrial deployment of multi-agent technologies: review and selected case studies. Autonomous Agents and Multi-Agent Systems, Volume 17, p. 397–431.

    Google Scholar 

  34. Provos, N., 2004. A Virtual Honeypot Framework. Berkeley, USENIX Association, pp. 1–1.

    Google Scholar 

  35. Rasch, R., Kott, A. & Forbus, K. D., 2002. AI on the battlefield: An experimental exploration. AAAI/IAAI.

    Google Scholar 

  36. Rasch, R., Kott, A. & Forbus, K. D., 2003. Incorporating AI into military decision making: an experiment. IEEE Intelligent Systems, 18(4), pp. 18–26.

    Google Scholar 

  37. Russell, S. J. & Norvig, P., 2003. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  38. Russell, S. J. & Norvig, P., 2010. Artificial Intelligence: a Modern Approach. 3rd ed. Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  39. Seufert, S. & O’Brien, D., 2007. Machine Learning for Automatic Defence Against Distributed Denial of Service Attacks. IEEE, ICC 2007 proceedings, pp. 1217–1222.

    Google Scholar 

  40. Silver, D. et al., 2017. Mastering the game of Go without human knowledge. Nature, 10, Volume 550, p. 354.

    Article  Google Scholar 

  41. Sislak, D., Volf, P., Kopriva, S. & Pěchouček, M., 2012. AgentFly: Scalable, High-Fidelity Framework for Simulation, Planning and Collision Avoidance of Multiple UAVs. In: P. Angelov, ed. Sense and Avoid in UAS: Research and Applications. Wiley Online Library: Wiley: John Wiley&Sons, Inc., https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119964049.ch9, pp. 235-264.

  42. Snyder, D. et al., 2015. Improving the Cybersecurity of U.S. Air Force Military Systems Throughout Their Life Cycles, Santa Monica, CA: RAND Corporation.

    Google Scholar 

  43. Stytz, M. R., Lichtblau, D. E. & Banks, S. B., 2005. Toward using intelligent agents to detect, assess, and counter cyberattacks in a network-centric environment, Alexandria, VA: Institute For Defense Analyses.

    Google Scholar 

  44. Tactical AGENTFLY, 2018. Agent Technology Center. [Online] Available at: http://agents.felk.cvut.cz/projects/agentfly/tactical [Accessed 6 June 2018].

  45. Théron, P., 2017. La cyber résilience, un projet cohérent transversal à nos trois thèmes, et la problématique particulière des Systèmes Multi Agent de Cyber Défense. Leçon inaugurale, 5 décembre 2017, ed. Salon de Provence, France: Chaire Cyber Résilience Aérospatiale (Cyb’Air).

    Google Scholar 

  46. Von Neumann, J., 1951. The General and Logical Theory of Automata. In: L. A. Jeffress, ed. Cerebral Mechanisms in Behavior: The Hixon Symposium, September 1948, Pasadena. New York: John Wiley & Sons, Inc, pp. 1–31.

    Google Scholar 

  47. Weick, K., 1993. The Collapse of Sensemaking in Organizations: The Mann Gulch Disaster. Administrative Science Quarterly, 38(4), pp. 628–652.

    Article  Google Scholar 

  48. Wooldridge, M. & Jennings, N. R., 1995. Intelligent agents: Theory and practice. The knowledge engineering review, 10(2), pp. 115–152.

    Google Scholar 

  49. Yuill, J., Zappe, M., Denning, D. & Feer, F., 2004. Honeyfiles: deceptive files for intrusion detection. IEEE Xplore, Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC, 10–11 June 2004, pp. 116–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Theron, P. et al. (2020). Reference Architecture of an Autonomous Agent for Cyber Defense of Complex Military Systems. In: Jajodia, S., Cybenko, G., Subrahmanian, V., Swarup, V., Wang, C., Wellman, M. (eds) Adaptive Autonomous Secure Cyber Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-33432-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33432-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33431-4

  • Online ISBN: 978-3-030-33432-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics