Skip to main content

Threat Identification in Humanitarian Demining Using Machine Learning and Spectroscopic Metal Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

The detection of buried minimum-metal anti-personnel landmines is a time-consuming problem, due to the high false alarm rate (FAR) arising from metallic clutter typically found in minefields. Magnetic induction spectroscopy (MIS) offers a potential way to reduce the FAR by classifying the metallic objects into threat and non-threat categories, based on their spectroscopic signatures. A new algorithm for threat identification for MIS sensors, based on a fully-connected artificial neural network (ANN), is proposed in this paper, and compared against a classifier based on Support Vector Machines (SVM). The results demonstrate that MIS is a potentially viable option for the reduction of false alarms in humanitarian demining. It is also shown that the ANN outperforms the SVM-based approach for threat objects containing minimal amounts of metal.

Supported by the Sir Bobby Charlton Foundation and EPSRC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Amazeen, C., Locke, M.: Developmental status of the U.S. Army’s new Handheld STAndoff MIne Detection System (HSTAMIDS). In: Second International Conference on Detection of Abandoned Land Mines, vol. 1998, pp. 193–197 (1998)

    Google Scholar 

  3. Chollet, F., et al.: Keras (2015). https://keras.io

  4. Daniels, D., Braustein, J., Nevard, M.: Using MINEHOUND in Cambodia and Afghanistan. J. ERW Mine Action 18(2), 14 (2014)

    Google Scholar 

  5. Daniels, D.J.: A review of GPR for landmine detection. Sens. Imaging: Int. J. 7(3), 90–123 (2006)

    Article  Google Scholar 

  6. Geophex: GEM-3M: A Ground Imager with a Local Navigator. Technical report (2012)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  8. Huang, H., Won, I.J.: Automated identification of buried landmines using normalized electromagnetic induction spectroscopy. IEEE Trans. Geosci. Remote Sens. 41(3), 640–651 (2003)

    Article  Google Scholar 

  9. Huang, H., Won, I.J.: Characterization of UXO-like targets using broadband electromagnetic induction sensors. IEEE Trans. Geosci. Remote Sens. 41(3), 652–663 (2003)

    Article  Google Scholar 

  10. Knox, M., Rundel, C., Collins, L.: Sensor fusion for buried explosive threat detection for handheld data. In: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII 10182, May 2017. 101820D (2017). https://doi.org/10.1117/12.2263013

  11. Lameri, S., Lombardi, F., Bestagini, P., Lualdi, M., Tubaro, S.: Landmine detection from GPR data using convolutional neural networks. In: 25th European Signal Processing Conference, EUSIPCO, January 2017, pp. 508–512 (2017). https://doi.org/10.23919/EUSIPCO.2017.8081259

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  13. Marsh, L.A., et al.: Spectroscopic identification of anti-personnel mine surrogates from planar sensor measurements. In: Proceedings of IEEE Sensors, pp. 1–3 (2016)

    Google Scholar 

  14. Marsh, L.A., et al.: Combining electromagnetic spectroscopy and ground-penetrating radar for the detection of anti-personnel landmines. Sensors 19(15), 3390 (2019)

    Article  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Sato, M., Kikuta, K., Chernyak, I.: Dual sensor “ALIS” for humanitarian demining. In: 2018 17th International Conference on Ground Penetrating Radar (GPR), pp. 1–4 (2018)

    Google Scholar 

  17. Stanley, R.J., Gader, P.D., Ho, K.C.: Feature and decision level sensor fusion of electromagnetic induction and ground penetrating radar sensors for landmine detection with hand-held units (2002)

    Article  Google Scholar 

  18. The Halo Trust: HALO Utilises Dual-sensor Detector | The HALO Trust (2011). https://www.halotrust.org/media-centre/news/halo-utilises-dual-sensor-detector/

  19. UN Secretary General: Assistance in mine clearance: Report of the Secretary-General A/49/357. Technical report, United Nations, September 1994

    Google Scholar 

  20. van Verre, W., Marsh, L.A., Davidson, J.L., Cheadle, E., Podd, F.J.W., Peyton, A.J.: Detection of Metallic Objects in Mineralised Soil Using Magnetic Induction Spectroscopy (2019, submitted)

    Google Scholar 

  21. Won, I.J., Keiswetter, D.A., Bell, T.H., Miller, J., Barrow, B.: Electromagnetic induction spectroscopy for landmine identification. IEEE Trans. Geosci. Remote Sens. 39(4), 801–809 (2001)

    Article  Google Scholar 

  22. Won, I.J., Keiswetter, D.A., Hanson, D.R., Novikova, E., Hall, T.M.: GEM-3: Monostatic Broadband Electromagnetic Induction Sensor (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter van Verre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Verre, W., Özdeǧer, T., Gupta, A., Podd, F.J.W., Peyton, A.J. (2019). Threat Identification in Humanitarian Demining Using Machine Learning and Spectroscopic Metal Detection. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics