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Abstract. Prostate cancer is the most common cancer in men in the UK. An ac-

curate diagnosis at the earliest stage possible is critical in its treatment. Multi-

parametric Magnetic Resonance Imaging is gaining popularity in prostate cancer 

diagnosis, it can be used to actively monitor low-risk patients, and it is convenient 

due to its non-invasive nature. However, it requires specialist knowledge to re-

view the abundance of available data, which has motivated the use of machine 

learning techniques to speed up the analysis of these many and complex images. 

This paper focuses on assessing the capabilities of two neural network ap-

proaches to accurately discriminate between three tissue types: significant pros-

tate cancer lesions, non-significant lesions, and healthy tissue. For this, we used 

data from a previous SPIE ProstateX challenge that included significant and non-

significant lesions, and we extended the dataset to include healthy prostate tissue 

due to clinical interest. Feed-Forward and Convolutional Neural Networks have 

been used, and their performances were evaluated using 80/20 training/test splits. 

Several combinations of the data were tested under different conditions and sum-

marised results are presented. Using all available imaging data, a Convolutional 

Neural Network three-class classifier comparing prostate lesions and healthy tis-

sue attains an Area Under the Curve of 0.892. 

 

Keywords: Feed-Forward Neural Networks, Convolutional Neural Networks, 

SPIE ProstateX, mpMRI, prostate cancer. 

1 Introduction 

The tools for the diagnosis of prostate cancer (PCa) are seeing change in recent times. 

In the UK, trials for diagnosis by Magnetic Resonance Imaging (MRI) scans, as a non-

invasive test, are proving to provide benefit in various areas that the current first line of 

diagnosis (a PSA blood test and biopsy) lack [1]. In addition, active surveillance using 
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multiparametric MRI (mpMRI) has gained popularity as an acceptable management 

option for low-risk prostate cancer patients, as it can delay or prevent unnecessary in-

terventions - thereby reducing morbidity associated with overtreatment [2]. However, 

the volumetric analysis of mpMRI scans remains challenging as it requires specialist 

knowledge and is time consuming. This has motivated the use of machine learning 

techniques to assist with the analysis of these many and complex images, with the aim 

of increasing accuracy (especially relevant in places without access to specialist 

knowledge) and speed up the process (also reducing costs). 

This study conducts a comparative analysis with both Feed-Forward Neural Network 

(FFNN) [3] and Convolutional Neural Network (CNN) [4] architectures as methods for 

utilising machine learning methodologies for the classification of prostate cancers and 

healthy tissue on mpMRI scans. It extends on work conducted by the authors previously 

[5], where the healthy prostate class was added to the SPIE ProstateX challenge dataset 

[6]. Using advice from collaborating clinicians, the contralateral of the lesion location 

was taken as healthy prostate tissue, extending from the two classes available in the 

dataset – clinically significant lesions and non-significant lesions. The latter, “non-sig-

nificant” prostate lesions do not always require treatment as they hold a lower Gleason 

score [7]. 

Previously, various methods were applied to the original SPIE ProstateX challenge 

problem for classification against the two lesion classes – including transfer learning 

[8], SVM [9] and convolutional neural networks [10], but not including the healthy 

class, which is of clinical interest. Only the authors’ previous work included the healthy 

class, in which SVM was used for binary classification and a voting ensemble system 

was implemented for the diagnosis of individual cases [5]. Hence, the natural next step 

was to test more sophisticated approaches, which led us to the use of neural networks, 

and perform a comparative assessment of both FFNNs and CNNs to model classifica-

tion of prostate lesions against healthy tissue using SPIE ProstateX mpMRI data. 

The structure of the rest of the paper is as follows: the Data section details a descrip-

tion of the SPIE ProstateX dataset used in the study, with the Classification Methods 

section describing the setup of the FFNN and CNN applications. The Results and Dis-

cussion section provides insights into the comparative assessment of the two machine 

learning algorithms to model the diagnosis of prostate cancer through mpMRI. 

2 Data 

The SPIE ProstateX challenge training data was attained for this study and was ex-

tended for clinical use. The data was distributed in DICOM format. Table 1 provides 

class label information for the dataset used for this study, with a more extensive de-

scription available in [5]. The Gleason score (GS) determines the aggressiveness of 

PCa. At least one lesion was found in every patient. The lesion significance level was 

stored in the metadata for the respective DICOM files; however, the Gleason Score was 

not provided.  
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Various parameters of MRI were provided; Apparent Diffusion Coefficient (ADC), 

Ktrans and T2-weighted imaging are used in this paper due to their link in detecting clin-

ical significance [11].  ADC is a measure of the magnitude of diffusion (of water mol-

ecules) within tissue and is calculated from diffusion weighted imaging. Ktrans, a type 

of perfusion imaging, represents a measure of capillary permeability, calculated from 

dynamic contrast-enhanced imaging. T2-weighted imaging is a form of spin-echo pulse 

sequencing, showing fatty tissue and fluid brightly. 

The contralateral was taken from 54 patients as described in [5]. This dataset was 

the training dataset of the challenge, however in this paper it has been used as the sole 

dataset – used for training and testing; at the time of writing, the challenge dataset test 

labels have not been released. Different planes were used whilst scanning the patients 

to create a 3D view around the region of interest (ROI): coronal, sagittal and transverse. 

Table 1 – Class label information on the extended SPIE ProstateX dataset used in this study. 

Class Gleason 

Score 

Available  

(N = 384) 

Under-sampled 

data 

Over-sampled 

data 

Clinically Significant 7 76 76 228 

Non-Significant 6 251 75 251 

Healthy tissue N/A 54 54 216 

Both under-sampling and over-sampling techniques have been applied to the dataset 

and compared. Under-sampling is the practice of randomly deleting observations from 

the larger class, ensuring a good comparative ratio. Synthetic Minority Oversampling 

Technique (SMOTE) has been utilised for over-sampling, which synthetically manu-

factures observations of the unbalanced class which share a likeness with the said class; 

using the k-Nearest Neighbours technique. These methods were tested on the data as 

provided. Table 1 shows the class sizes for each sampling method, as well as the orig-

inal class sizes. 

3 Classification methods 

For creating the FFNN and CNN classifiers, we followed the steps detailed below: 

a) Pre-processing, region of interest extraction, vectorisation and standardisation: 

Various rules were required for pre-processing this large data set; an extensive 

description, including a description of the contralateral for healthy prostate tis-

sue, is available in [5]. For this study, the FFNNs utilised a 5*5mm centred 

patch extracted at 1 px/mm around the ROI, while and the CNNs utilised 

25*25mm centred patch extracted at 1 px/mm around the ROI, with the input 

in image format i.e. [25 25 1]. All data was standardised by subtracting the 

mean and dividing by the standard deviation, ensuring that each dimension was 

approximately normal. 

b) Lesion classification using FFNNs: The data for FFNNs were inputted as flat-

tened vectors. Both binary and three-class classifiers were tackled in this study. 
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The network architecture for this model FFNN consisted of input layers, hidden 

layers and output layers, utilising both dense and dropout layers. The dropout 

layer is used for regularisation. ReLU and Softmax activation functions were 

utilised, the loss function was sparse categorical cross-entropy and the Adam 

optimiser was utilised.  

c) Lesion classification using CNNs: CNNs were used for both binary and three-

class classification. The CNN architecture in this work used an array of differ-

ent layers – two-dimensional convolutional layers, pooling layers, dropout lay-

ers and a dense layer. The CNN employed ReLU and Softmax activation func-

tions, categorical cross-entropy loss function and a stochastic gradient descent 

optimizer.  

d) Hyperparameter selection and finetuning: Hyperparameter selection has been 

utilised upon a large selection of combinations of parameters for model train-

ing.  

e) Table 2 lists the values for hyperparameter selection. 

f) Validation: For all models, an 80/20 out-of-bag sampling method for train-

ing/test has been utilised. 

Table 2 – Hyper-parameter tuning values performed (six for FFNN and twelve for CNN). 

 Hyper-parameter Tested values Hyper-parameter Tested values 

F
F

N
N

 Dense units 1st layer 25, 50, 100, 150, 200, 250 Dropout units 4th layer 0.05, 0.1 

Dropout rate 2nd layer 0.05, 0.1, 0.2 Epochs 25, 50, 100 

Dense units 3rd layer 50, 100, 150 Batch size 32, 64 

C
N

N
 

Filters 1st layer 16, 32, 64 Filters 5th layer 32, 64 

Kernel size 1st layer 2, 3 Kernel size 5th layer 2, 3 

Filters 2nd layer 16, 32, 64 Dropout rate 6th layer 0.05, 0.1, 0.2, 0.3 

Kernel size 2nd layer 2, 3 Dense units 7th layer 50, 100, 200 

Dropout rate 3rd layer 0.1, 0.2 Dropout rate 8th layer 0.1, 0.2, 0.3 

Filters 4th layer 32, 64 Epochs 15, 25, 50 

Kernel size 4th layer 2, 3 Batch size 32, 64 

 

The total number of models developed with the FFNN architecture was 864, and the 

total of models with CNN was 994. This allowed us to identify the best set of hyper-

parameter values for each architecture and the data at hand. Classification was con-

ducted against the clinical significance label denoted to the prostate lesion, or healthy 

tissue. Binary classifiers have been tested as well as the three-class classification prob-

lem, with the Area Under the Curve (AUC) reported for each test. A McNemar test was 

used to determine whether the results between the two architectures were statistically 

significant. 
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4 Results and Discussion 

Various comparative experiments of FFNNs and CNNs were performed. Tests for 

the binary classifiers are averaged over single modality tests – for example, for the 

Significant vs. Non-Significant classifier, the classification was conducted for T2-

weighted only, for ADC only and for Ktrans only, and averaged. Results are summarised 

in Table 3. 

 
Table 3 - Summarised results for the comparative assessment of the FFNN and CNN appli-

cation to the extended SPIE ProstateX dataset. The binary classifiers were performed on each 

of the mpMRI scan parameters alone and are then averaged for each separate classifier. S: Sig-

nificant; N: Non-Significant; H: Healthy. 

 Under-sampled data Over-sampled data 

 FFNN CNN FFNN CNN 

Single mpMRI, binary:  

S vs. N 
0.703 ± 0.025 0.619 ± 0.059 0.831 ± 0.023 0.837 ± 0.047 

Single mpMRI, binary:  

S vs. H 
0.871 ± 0.033 0.583 ± 0.074 0.954 ± 0.011 0.905 ± 0.054 

Single mpMRI, binary: 

N vs. H 
0.645 ± 0.091 0.720 ± 0.048 0.873 ± 0.020 0.960 ± 0.031 

All mpMRI, three-classes: 

S vs. N vs. H 
0.628 0.648 0.824 0.892 

 

The first thing to notice from the results is that always the over-sampling strategy 

outperformed the under-sampling, regardless of the neural network architecture used. 

This is not surprising as during the under-sampling process we are bound to lose what 

can turn out to be valuable information from the cases left out, whilst the over-sampling 

process would benefit from keeping those cases in the dataset. This is even more the 

case since the size of the dataset is not very large; hence, the reduction of a number of 

observations may limit the generalisation capabilities of the models since the data used 

would not be properly representing the population. 

Focusing the attention from this point onwards on the results obtained with the over-

sampled data for the binary classifiers, using a single mpMRI, we can see that both 

neural network architectures have produced more competitive results than the previous 

ones in [5] using SVM, where the AUC for Significant vs. Non-significant was 0.72 (in 

this study, FFNN: 0.83, CNN: 0.84), Significant vs. Healthy was 0.87 (in this study, 

FFNN: 0.95, CNN: 0.91), and Non-significant vs. Healthy was 0.71 (in this study, 

FFNN: 0.87, CNN: 0.96). We compared the obtained results with the ones in [5] since 

the dataset used is the same. One of the reasons the results are so much improved in the 

current study can be explained by the use of the SMOTE over-sampling (which was not 

the case in the previous study), leading to a better informed dataset of which both neural 

network methods made the most of. 

Previous works that looked at the discrimination of the Clinically Significant lesions 

from the Non-significant ones, reported AUCs of 0.83 in [8], 0.811 in [9] and 0.84 in 
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[10]. This compares with AUCs of approximately 0.83 (when using FFNN) and 0.84 

(when using CNN) in our results for the same discrimination problem, hence we can 

conclude from here that we have matched the results from these previous study, whilst 

adding extra value from the inclusion of the Healthy class. In the case of the comparison 

of the other two binary classifiers (i.e. Significant vs. Healthy and Non-Significant vs. 

Healthy) with the rest of the literature was not possible since the Healthy class was 

introduced to this dataset following the request of clinical collaborators. 

After being reassured that the results for the Significant vs. Non-Significant problem 

are in line with the literature, we can focus the attention on the comparison between 

FFNN and CNN. Starting with the binary classifiers: In the case of the Significant vs. 

Non-Significant classifier, the McNemar test resulted in a p-value > 0.05 (any p-value 

> 0.05 is deemed as not statistically significant), hence we conclude that both FFNN 

and CNN models are equivalent. In the case of the other two binary classifiers, FFNN 

was better for the Significant vs. Healthy classifier, whilst CNN was better for the Non-

significant vs. Healthy. Hence, in the case of these binary classification problems, we 

can only advice that both architectures should be considered, as each of them will have 

something to offer. However, if only one architecture was going to be used, and more 

weight was given to the accurate identification of the clinically significant class using 

binary classifiers, we would recommend the use of FFNN, since it produced a better 

outcome in the separation of this class from healthy tissue. 

When looking at the three-class classifier that utilises all three mpMRI data available 

to the study, the CNN performed the best, with an AUC of 0.89. A McNemar test 

showed that between the FFNN and the CNN over all three classes, the differences in 

predictions observed are statistically significant (p-value < 0.05). This corroborates 

with [11], which denotes there is a relationship in clinical significance between the 

utilised MRI scan parameters in this study – T2-weighted, ADC and Ktrans. Therefore, 

we would recommend the use of CNN in the scenario where a three-class classifier is 

implemented using these MR images for the simultaneous separation of the Significant, 

Non-significant, and Healthy classes. 

5 Conclusions and further work 

This study looked at a comparative assessment of FFNNs and CNNs, both in the 

context of binary and a three-class classifier for the separation of prostate lesions 

against healthy tissue. The inclusion of the healthy class to a publicly available dataset 

was motivated by the interest of clinical collaborators. The use of both FFNN and CNN 

architectures proved successful for both binary and three-class classifiers, leading to 

clinical impact.  

Future work will look at interpreting the CNN features through sensitivity analysis. 

As opposed to FFNNs, CNN features are by nature sparse. This would provide insights 

into tissue relevance discrimination. 
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