
Cylindric Kleene Lattices for
Program Construction?

Brijesh Dongol1, Ian Hayes2, Larissa Meinicke2, and Georg Struth3

1 University of Surrey, UK
2 University of Queensland, Australia

3 University of Sheffield, UK

Abstract. Cylindric algebras have been developed as an algebraisation
of equational first order logic. We adapt them to cylindric Kleene lattices
and their variants and present relational and relational fault models for
these. This allows us to encode frames and local variable blocks, and to
derive Morgan’s refinement calculus as well as an algebraic Hoare logic
for while programs with assignment laws. Our approach thus opens the
door for algebraic calculations with program and logical variables instead
of domain-specific reasoning over concrete models of the program store.
A refinement proof for a small program is presented as an example.

1 Introduction

Kleene algebras and similar formalisms have found their place in program con-
struction and verification. Kleene algebras with tests [19] have been used for cal-
culating complex program equivalences; the rules of propositional Hoare logic—
Hoare logic without assignments laws—can be derived from their axioms [20].
Demonic refinement algebras [29] have been applied to non-trivial program trans-
formations in the refinement calculus [3]. Modal Kleene algebras [7,8] have been
linked with predicate transformer semantics and found applications in program
correctness. More recently, links between Kleene algebras and Morgan-style re-
finement calculi [23] have been established; program construction and verification
components based on Kleene algebras have been formalised in proof assistants
such as Coq [9,25] or Isabelle/HOL [2,15,28].

The Isabelle components are based on shallow embeddings of while programs,
Hoare logic and refinement calculi. Programs, assertions and correctness specifi-
cations are modelled as semantic objects directly within Isabelle’s higher-order
logic. Explicit data types for the syntax of programs, assertions or logics of pro-
grams, and explicit semantic maps for their interpretation can thus be avoided.
Kleene algebras, as abstract semantics for while programs, propositional Hoare
logics or propositional refinement calculi, fit very naturally into this approach.
Yet assignments and their laws are currently formalised in concrete program
store semantics that form models of the algebras. With a shallow embedding,

? Dongol and Struth are supported by EPSRC Grant EP/R032556/2; Hayes, Meinicke
and Dongol are supported by ARC Discovery Grant DP19010214.

2 Dongol, Hayes, Meinicke and Struth

program construction and verification is thus performed in these concrete se-
mantics. Other familiar features of refinement calculi, such as variable frames or
local variable blocks, cannot be expressed in Kleene algebras either. How algebra
could handle such important features remains open.

Yet algebra can deal with bindings, scopes and variables. Nominal Kleene
algebras [13] can model the first two features, and cylindric algebras of Henkin,
Monk and Tarski [17] the third, albeit in the setting of boolean algebras, where
notions of variables and quantification are added in an algebratisation of first-
order equational logic. They introduce a family of cylindrification operators cκ x
that abstract existential quantification ∃κx of first-order formulas.

Henkin, Monk and Tarski give a standard interpretation of cκ in cylindric
set algebras [17, p.166]. In this setting, cylindrification is defined over P Xα for
some set X and ordinal α.4 Elements of a cylindric set algebra are therefore
functions of type α → X, or sequences x = (x0, x1, . . .) of “length” α. In logic,
if α is a set of logical variables and X the carrier set of a structure, these
correspond to valuations. Geometrically, Xα corresponds to an α-dimensional
Cartesian space with base X where xκ represents the κth coordinate. Apart
from the usual boolean operations on sets, cylindric set algebras use a family
of cylindrification operators Ccκ : P Xα → PXα for κ < α—the superscript c
stannds for “classical”. For each A ⊆ Xα,

CcκA = {y ∈ Xα | ∃x ∈ A. x ≈κ y},

where x ≈κ y if x and y are equal, except at κ, (i.e. ∀λ 6= κ. xλ = yλ).
Geometrically, CcκA thus translates A along the κ-axis and constructs a cylinder
in some hyperspace.

Our main idea is to generalise cylindrification from boolean algebras to
Kleene lattices (thus foregoing the complement operator of boolean algebra,
while adding a monoidal composition and a star). We explain it through re-
lational cylindrification Cκ, which acts on programs modelled by relations in
P (Xα ×Xα), where Xα represents program stores as functions from variables
in α to values in X. Cylindrifying relation R in variable κ by CκR means adding
any combination of values for κ to elements of R. We therefore say that Cκ lib-
erates variable κ in program R,

CκR = {(a, b) ∈ Xα ×Xα | ∃(c, d) ∈ R. a ≈κ c ∧ b ≈κ d}.

Note that κ is liberated (can take on any value) independently in both the first
and second coordinates of R.5

The cylindrification of the identity relation, Cκ IdXα , in particular, liberates
variable κ while constraining all other variables to satisfy the identity relation on

4 In applying Henkin, Monk and Tarski’s work to program algebra we do not rely
much on the use of ordinals; sets usually suffice.

5 Expressing the relation as a predicate in the Z style [27,16], i.e. representing before
values of a variable by x and after values by x′, relational cylindrification corresponds
to the predicate ∃x,x′R.

Cylindric Kleene Lattices for Program Construction 3

Xα. Henkin, Monk and Tarski [17, §1.7] have generalised cylindrification to finite
sets of variables so that c({κ0,...,κn−1})x = cκ0

. . . cκn−1
x, where the parentheses

on the left are part of their syntax. For a set of variables Γ , a program R may
be restricted to only change variables in Γ by conjoining it with C(Γ)IdXα , i.e.
R ∩ C(Γ)IdXα , which we abbreviate to Γ : x to match the syntax of frames in
Morgan’s refinement calculus [24]. A local variable κ with a scope over some
program R is obtained by first liberating the local κ over the program and then
constraining any non-local κ to not change, i.e. (CκR) ∩ C

({κ})IdXα , which we

abbreviate as (varκ.R). Finally, assignment statements are encoded by framed
specification statements, where tests are used to abstract from expressions, and
variable substitutions are handled using another concept from cylindric algebras,
namely diagonal elements.

Our main contribution lies in the formal development of this new extension
and application of cylindrification. This opens the door to algebraic calculations
with variables in imperative programs where set-theoretic reasoning in concrete
store semantics is so far required. Our technical contributions are as follows.

– We extend Kleene algebras (§2) to cylindric Kleene lattices (§4), explore
their basic properties and prove their soundness with respect to a relational
(fault) semantics for imperative programs (§3 and §5).

– Generalised cylindrification liberates a set of variables, rather than a single
variable (§6). It is used to show that the frames of Morgan’s refinement
calculus (§8) and local variable blocks (§9) can be expressed in cylindric
Kleene lattices. Based on these encodings we derive the laws of Morgan’s
refinement calculus with frames and those of Hoare logic (§7), both with
assignment laws.

– Synchronous cylindrification (§10) supports the cylindrification of tests in
the relational model. It is used in combination with diagonal elements (rep-
resenting equality in equational logic) to define substitutions algebraically
(§11). These are then used to define variable assignments (§12).

– We explain how simple refinement proofs can be performed in our framework
by purely algebraic and symbolic reasoning.

– We propose liberation Kleene lattices (§13) as a conceptually simpler and
more fine-grained variant, and prove that the axioms of cylindric Kleene
lattices are derivable from those of liberation Kleene lattices.

Many of our results have been verified with Isabelle/HOL, but verification and re-
finement components based on cylindric Kleene algebras remain work in progress.
All Isabelle proofs are accessible online6.

Overall, many of the concepts needed for our development could be readily
adapted from cylindric algebra. Henkin, Monk and Tarski’s textbook [17] has
been a surprising source of insights from a seemingly unrelated area. We follow
their notational conventions closely.

6 https://github.com/gstruth/liberation

https://github.com/gstruth/liberation

4 Dongol, Hayes, Meinicke and Struth

2 l-Monoids and Kleene Lattices

This section briefly recalls the basic algebraic structures used in this article.
Cylindric variants are presented in Section 4, liberation algebras are introduced
in Section 13. We work with l-monoids instead of dioids and Kleene lattices
instead of Kleene algebras because a meet operation is crucial for defining the
concepts we care about: frames, local variables and variable assignments.

Definition 1 (l-monoid). A lattice-ordered monoid (l-monoid) [4] is a struc-
ture (L,+, ·, ;, 0, 1) such that (L,+, ·, 0) is a lattice with join operation +, meet
operation ·, and least element 0; (L, ;, 1) is a monoid and the distributivity ax-
ioms x ; (y+z) = x ;y+x ;z and (x+y) ;z = x ;y+x ;z and annihilation axioms
0 ; x = 0 and x ; 0 = 0 hold for all x, y, z ∈ L. An l-monoid is weak if the axiom
x ; 0 = 0 is absent.

Definition 2 (Kleene lattice). A (weak) Kleene lattice [18,1] is a (weak) l-
monoid, K, equipped with a star operation ∗ : K → K, that satisfies the unfold
and induction axioms

1 + x ; x∗ ≤ x∗, z + x ; y ≤ y ⇒ x∗ ; z ≤ y,
1 + x∗ ; x ≤ x∗, z + y ; x ≤ y ⇒ z ; x∗ ≤ y.

The unfold and induction laws in the first line and those in the second line above
are opposites: the order of composition has been swapped.

Forgetting the meet operation in l-monoids yields dioids (i.e., semirings with
idempotent addition); forgetting meet in Kleene lattices yields Kleene algebras.

Definition 3 (l-monoid with tests). A (weak) l-monoid with tests is a struc-
ture (L,B,+, ·, ;, 0, 1,¬) where B ⊆ L, ¬ is a partial operation defined on B
such that (B,+, ·, 0, 1,¬) is a boolean algebra in which ; and · coincide and
(L,+, ·, ;, 0, 1) is a (weak) l-monoid. In addition, for all p ∈ B and x, y ∈ K,

p ; (x · y) = (p ; x) · (p ; y), and (x · y) ; p = (x ; p) · (y ; p).

Definition 4 (Kleene lattice with tests). A (weak) Kleene lattice with tests
is a (weak) l-monoid with tests that is also a (weak) Kleene lattice.

Alternatively, Kleene lattices can be based on the operation + : K → K that
satisfies the following unfold and induction axioms

x+ x ; x+ = x+, z + x ; y ≤ y ⇒ z + x+ ; z ≤ y,

and their opposites x + x+ ; x = x+ and z + y ; x ≤ y ⇒ z + z ; x+ ≤ y, even
when the unit 1 is absent. In the presence of this unit, the identities x+ = x ; x∗

and x∗ = 1 + x+ make the two variants interderivable.

Cylindric Kleene Lattices for Program Construction 5

3 Relation Kleene Lattices

Before cylindrifying l-monoids and Kleene lattices in the next section, we sketch
the relational model and the relational fault model of these algebras. First of
all, these form the basis of the standard relational program semantics to which
we restrict our attention. Secondly, they are used in the soundness proofs of the
cylindric and liberation algebras that we axiomatise. Last, but not least, they
provide valuable intuitions for the algebraic development.

A standard model of Kleene algebra with tests is formed by the algebra of
binary relations over a set X. In this model, + is interpreted as union, ; as
relational composition ((a, b) ∈ R ; S ⇔ ∃c ∈ X. (a, c) ∈ R ∧ (c, b) ∈ S), 0
as ∅, 1 as the identity relation on X, ((a, b) ∈ IdX ⇔ a = b), and ∗ as the
reflexive-transitive closure operation (R∗ =

⋃
i<ω R

i, for R0 = IdX and Ri+1 =
R ; Ri). As our basis is a lattice, · is interpreted as intersection. Finally, tests
are subidentities, that is, elements of PIdX = {R ⊆ X ×X | R ⊆ IdX}. These
distribute over infs in both arguments with respect to sequential composition.
Test complementation is defined by IdX − (). The test algebra PIdX forms a
subalgebra of any algebra P (X × X) of binary relations—in fact a complete
atomic boolean algebra. The following result is therefore routine.

Proposition 5. Let X be a set. Then (P(X ×X),PIdX ,∪,∩, ;, ∅, IdX ,−,∗) is
a Kleene lattice with tests—the full relation Kleene lattice with tests over X.

Weak Kleene lattices with tests are formed by relations that model faults or
nontermination over X×X⊥, where X⊥ = X∪{⊥} and ⊥ 6∈ X is an element that
represents a fault or non-termination. We refer to this model as the relational
fault model. We partition each R ⊆ X×X⊥ into its proper part Rp ⊆ X×X and
its faulting part Rf ⊆ X×{⊥}, that is, R = Rp∪Rf and Rp∩Rf = ∅. Redefining
R ; S = Rf ∪ Rp;S then makes faults override compositions, representing R as
(Rp, Rf) and S by (Sp, Sf) yields the semidirect product, which is well known
in semigroup theory:

(Rp, Rf) ; (Sp, Sf) = (Rp ; Sp, Rf ∪Rp ; Sf). (1)

With (Rp, Rf)0 = (IdX , ∅) and (Rp, Rf)i+1 = (Rp, Rf) ; (Rp, Rf)i we define

(Rp, Rf)∗ =
⋃
i<ω

(Rp, Rf)i. (2)

An inductive argument shows that ∗ satisfies the Kleene algebra axioms and that

(Rp, Rf)∗ = (R∗p, R
∗
p ;Rf).

Proposition 6. Let X be a set. Then (P(X ×X⊥),PIdX ,∪,∩, ;, ∅, IdX ,−,∗),
with composition (1) and star (2), forms a weak Kleene lattice with tests—the
full weak relation Kleene lattice with tests over X.

6 Dongol, Hayes, Meinicke and Struth

The identity of the pair representation with respect to ; is (IdX , ∅); its left
zero is (∅, ∅). All tests are proper and test complementation is restricted to
the proper part. Right annihilation fails because (Rp, Rf) ; (∅, ∅) = (∅, Rf) 6=
(∅, ∅) whenever Rf 6= ∅. Algebraic proofs for this development can be found in
Appendix A; it has been formalised with Isabelle.

Each subalgebra (K,B), with K ⊆ P (X×X) and B ⊆ PIdX , of a full (weak)
relation Kleene lattice with tests over X is a (weak) relation Kleene lattice with
tests over X.

The relation algebras described in this section have of course a much richer
structure. Firstly, we ignore the fact that relations have converses and can be
complemented, yet this only means that we focus on the programming concepts
that matter. Secondly, relational composition preserves sups in both arguments,
whereas the redefined composition (1) preserves sups in its first and non-empty
sups in its second argument. Non-preservation of empty sups in the second ar-
gument is of course due to the absence of right annihilation.

4 Cylindric l-Monoids and Kleene Lattices

This section extends l-monoids and Kleene lattices from Section 2 by a family
of cylindrification operators. In other words, we generalise the classical cylin-
dric algebras of Henkin, Monk and Tarski [17] from boolean algebras to Kleene
algebras. The axiomatisations have been developed, minimised and proved to
be independent using Isabelle/HOL. Apart from the axioms, we present some
simple algebraic properties, all of which have been verified with Isabelle. The
relational models from Section 3 are extended to models for cylindric l-monoids
and Kleene lattices in Section 5. In reading the following definition a suitable
intuition is that cκx represents an abstraction of existential quantification ∃κx.

Definition 7 (cylindric l-monoid). Let α be an ordinal. A (weak) cylindric
l-monoid (CLM) of dimension α is a structure (L,+, ·, ;, 0, 1, cκ)κ<α such that
(L,+, ·, ;, 0, 1) is a (weak) l-monoid and cκ : L→ L satisfies:

cκ 0 = 0, (C1)

x ≤ cκ x, (C2)

cκ (x · cκ y) = cκ x · cκ y, (C3)

cκcλ x = cλcκ x, (C4)

cκ (x+ y) = cκ x+ cκ y, (C5)

cκ (x ; cκ y) = cκ x ; cκ y, (C6)

cκ (cκ x ; y) = cκ x ; cκ y, (C7)

κ 6= λ ⇒ cκ 1 · cλ 1 = 1, (C8)

(cκ 1 ; cλ 1) · (cκ 1 ; cµ 1) = cκ (cλ 1 · cµ 1), (C9)

cκ (cλ 1) = cκ 1 ; cλ 1. (C10)

Cylindric Kleene Lattices for Program Construction 7

Classical cylindric algebra is axiomatised over a boolean algebra instead of a
Kleene lattice; a monoidal structure is absent. Cylindric algebras usually consider
diagonal elements dκλ as well [17]. In this sense CLM is diagonal free. CLMs with
diagonals are introduced in Section 11.

Axioms (C1), (C2), (C3) and (C4) are those of classical cylindric algebra [17,
p.162]; (C5) is derivable in that context because it is based on a boolean algebra.
The axioms (C6) and (C7) appear in a previous abelian-semiring-based approach
to cylindrification by Giacobazzi, Debray and Levi [14]. Axioms (C8)-(C10) are
new. In axioms (C1), (C5), (C9) and (C10), = could have been weakened to ≤.
Isabelle’s counterexample generators show that the axioms are independent. We
write 1κ instead of cκ 1. Intuitively, such elements are identities of ; except for
κ. The next lemmas establish basic facts about cylindrification. The properties
in the first one are known from classical cylindric algebras.

Lemma 8. [17, §1.2] In every weak CLM,

1. cκ cκ x = cκ x, (HMT1.2.3)
2. cκ x = 0⇔ x = 0, (HMT1.2.1)
3. cκ x = x⇔ ∃y. cκ y = x, (HMT1.2.4)
4. x · cκ y = 0⇔ y · cκ x = 0, (HMT1.2.5)
5. x ≤ y ⇒ cκ x ≤ cκ y, (HMT1.2.7)
6. x ≤ cκ y ⇔ cκ x ≤ cκ y, (HMT1.2.9)
7. cκ x · cλ y = 0⇔ cλ x · cκ y = 0. (HMT1.2.15)

Axiom (C2) and Lemma 8(1) and (5) can be summarised as follows.

Lemma 9. In every weak CLM, cκ is a closure operator.

The next lemma collects properties beyond classical cylindrical algebra.

Lemma 10. In every weak CLM,

1. cκ (x ; y) ≤ cκ x ; cκ y,
2. 1κ ; x ; 1κ ≤ cκ x,
3. 1 ≤ 1κ,
4. 1κ ; 0 = 0,
5. 1κ ; 1κ = 1κ,
6. 1κ ; 1λ = 1λ ; 1κ,
7. cκ (1λ · 1µ) = 1κ ; (1λ · 1µ),
8. 1κ + 1λ ≤ 1κ ; 1λ.

Lemma 10(2) may be strengthened to an equality in the relational model of
CLM, but neither in trace models [21] nor in the algebra; the following lemma
gives a counterexample.

Lemma 11. There is a CLM in which cκ x 6≤ 1κ ; x ; 1κ.

Proof. Consider the CLM with L = {0, 1, a}, join and meet defined by 0 < a < 1
and composition by a; a = a. It can be checked that cκ : 0 7→ 0, a 7→ 1, 1 7→ 1
satisfies (C1)-(C7). Yet cκ a = 1 6= a = 1 ; a ; a = 1κ ; a ; 1κ. ut

8 Dongol, Hayes, Meinicke and Struth

In any (weak) CLM L, let

Lcκ = {x ∈ L | cκ x = x},

denote the set of cylindrified elements in dimension κ. Similarly, we define Ll1κ ,
Lr1κ and L1κ as the sets of fixpoints of 1κ ; (), () ;1κ and 1κ ; () ;1κ, respectively.
Lemma 8(3) implies that Lcκ is equal to the image of L under cκ. Analogous
facts hold for the other three functions.

Proposition 12. Let L be a (weak) CLM and let κ < α. Then

1. (Ll1κ ,+, ·, ;, 0, 1κ) forms a (weak) sub-l-semigroup of L with left unit 1κ,
2. (Lr1κ ,+, ·, ;, 0, 1κ) forms a sub-l-semigroup of L with right unit 1κ and if L

is a strong CLM, then Ll1κ and Lr1κ are isomorphic,
3. (L1κ ,+, ·, ;, 0, 1κ) forms a sub-l-monoid of Ll1κ and Lr1κ ,
4. (Lcκ ,+, ·, ;, 0, 1κ) forms a (weak) sub-l-monoid of L1κ .

Proof.

1. For Ll1κ , it is well known that any principal right-ideal of an idempotent
in a monoid forms a subsemigroup with the idempotent as left unit. By
Lemma 10(5), 1κ is an idempotent; Ll1κ is the principal right-ideal generated
by 1κ by definition. Closure with respect to sups follows from the dioid
axioms in L and idempotence of 1κ; inf-closure from 1κ ; (1κ ; x · 1κ ; y) =
1κ ; x · 1κ ; y, which has been checked with Isabelle.

2. The proof for Lr1κ follows from that of Ll1κ by opposition, using the dual
identity (x ; 1κ · y ; 1κ) ; 1κ = x ; 1κ · y ; 1κ for inf-closure. Right annihilation in
Lr1κ follows from Lemma 10(4). In the strong case, the isomorphism is given
by opposition.

3. The subalgebra proof for L1κ follows from (1) and (2). Checking that L1κ is
a subalgebra of both Ll1κ and Lr1κ is straightforward: by idempotence of 1κ,
every fixpoint of L1κ is a fixpoint of Ll1κ and Lr1κ .

4. For Lcκ , closure with respect to +, · and ; is immediate from the axioms.
Sup-closure, for instance, means checking that cκ (cκ x+ cκ y) = cκ x+ cκ y.
Finally, 1κ is the unit in the subalgebra because 1κ ; cκ x = cκ x = cκ x ; 1κ.
This property, which also establishes that Lcκ is a subalgebra of L1κ , has
been confirmed by Isabelle.

ut

By Lemma 11, the sets of fixpoints of Lcκ and L1κ need not coincide. Separating
the remaining sets of fixpoints with Isabelle’s counterexample generators is a
simple exercise and need not be expanded.

Definition 13 (cylindric Kleene lattice). A (weak) cylindric Kleene lattice
(CKL) of dimension α is a (weak) cylindric l-monoid of dimension α that is also
a (weak) Kleene lattice, and in which

cκ x
+ ≤ (cκ x)+. (C11)

Cylindric Kleene Lattices for Program Construction 9

Isabelle’s counterexample generators show that 1 need not be in Kcκ for any κ,
in particular not in the relational models described in Section 5. Together with
Proposition 12 this explains why a +-axiom appears in CKL, and not a ∗-axiom.
Next we list properties of cylindric Kleene lattices.

Lemma 14. In every weak CKL,

1. cκ x
∗ ≤ 1κ ; (cκ x)∗,

2. cκ (cκ x)+ = (cκ x)+,
3. 1κ ; (cκ x)+ = (cκ x)+,
4. 1κ ; (cκ x)+ = (cκ x)+ ; 1κ,
5. cκ (cκ x)∗ = 1κ ; (cκ x)∗,
6. 1κ ; (cκ x)∗ = (cκ x)∗ ; 1κ,
7. (1κ + 1λ)+ = 1κ ; 1λ = (1κ + 1λ)∗,
8. 1+κ = 1κ = 1∗κ.

Finally, Proposition 12 extends to CKL.

Proposition 15. (Kcκ ,+, ·, ;, 0, 1κ, ()+) is a (weak) sub-Kleene lattice of the
(weak) CKL K for each κ < α.

The cases of Kl
1κ , Kr

1κ and K1κ are analogous. The first two benefit from the
fact that ()+ can be used to define sub-Kleene lattices (Kl

1κ ,+, ·, ;, 0, 1κ, ()+)
and its opposite (Kr

1κ ,+, ·, ;, 0, 1κ, ()+) that do not require 1κ.

5 Relational Cylindrification

In constructions of cylindric algebras of formulas of predicate logic, sequences in
Xα correspond to valuations [17]. They associate variables of first-order formulas
with values in their models. In imperative programming languages, functions
from variables in α to values inX form the standard model of program stores, and
the standard denotational semantics interprets programs as relations between
these. Our aim is to model cylindrifications over such relations.

Hence we consider relations R ⊆ Xα × Xα and relational cylindrifications
Cκ : P (Xα ×Xα)→ P (Xα ×Xα) that liberate the value of variable κ in both
coordinates of ordered pairs. Formally, we therefore define

CκR = {(a, b) ∈ Xα ×Xα | ∃c, d ∈ Xα. (a, b) ≈κ (c, d) ∧ (c, d) ∈ R},

where ≈κ has been extended pointwise to an equivalence on pairs: (a, b) ≈κ (c, d)
if and only if a ≈κ c and b ≈κ d.

Operationally, therefore, CκR is constructed from R by adding all those pairs
to R that are equal to some element of R, except at κ, in both their first and
their second coordinate. In particular,

(a, b) ∈ (IdXα)κ ⇔ a ≈κ b.

10 Dongol, Hayes, Meinicke and Struth

On pairs, (a, b) ≈κ (c, d)⇔ ∃e, f. (a, b) = (c[κ← e], d[κ← f]). Thus

CκR = {(a, b) | ∃e, f. (a[κ← e], b[κ← f]) ∈ R}

presents relational cylindrification in a way that is particularly suggestive for
programming: CκR is obtained from R by updating variable κ “asynchronously”
in the pre-state and post-state of R in all possible ways.

We henceforth write Id and Idκ when the underlying set Xα is obvious. An
important property is that the relational cylindrification of Id suffices to express
all other relational cylindrifications.

Lemma 16. Let R ⊆ Xα ×Xα. Then

CκR = Idκ ;R ; Idκ.

We have proved this fact with Isabelle. By Lemma 11, CKL is too weak to capture
this property, but we expect it to fail, for instance, in trace models for which
cylindrification by κ liberates κ in every state in the trace [21], not just the first
and last states, i.e. ≈κ is lifted to apply to every state in the traces.

Some rewriting may be helpful to understand the actions of Idκ ; () and
() ; Idκ on relations: Idκ ; R = {(a, b) | ∃c ∈ X. (a[κ ← c], b) ∈ R} and R ; Idκ
acts similarly on second coordinates. Thus Idκ ;R models a left-handed relational
cylindrification of first coordinates and R ; Idκ its right-handed opposite.

For faulting relations, Cκ : P (Xα ×Xα
⊥) → P (Xα ×Xα

⊥) is determined by
Lemma 16 as (Idκ, ∅) ; (Rp, Rf); (Idκ, ∅), which yields

CκR = (CκRp, Idκ ;Rf).

Hence we cylindrify the proper part of R and the first coordinate of its faulting
part. This prevents the leakage of faults into proper parts of relations. We recall
that PIdXα is the set of subidentities over Xα.

Proposition 17. For every ordinal α and set X,

1. (P (Xα ×Xα),P IdXα ,∪,∩, ;, ∅, IdXα ,−,∗ , Cκ)κ<α is a CKL with tests;
2. (P(Xα×Xα

⊥),P IdXα ,∪,∩, ;, ∅, IdXα ,−,∗ , Cκ)κ<α, with composition (1) and
star (2), is a weak CKL with tests.

Proof. Liberation Kleene lattices and their weak variants are introduced in Sec-
tion 13. Proposition 43 in that section shows that every (weak) liberation Kleene
lattice is a (weak) CKL. Lemma 44 in the same section shows that the liberation
Kleene lattice axioms hold in P (Xα×Xα) while P (Xα×Xα

⊥) satisfies the weak
liberation Kleene lattice axioms. ut

We call P (Xα×Xα) the (full) relation CKL with tests over Xα and P (Xα×Xα
⊥)

the (full) weak relation CKL with tests over Xα.
Henkin, Monk and Tarski show that classical cylindric algebras are closed

under direct products. Yet P Xα × P Xα and P (Xα ×Xα) are not isomorphic
and thus our axiomatisation of CKL cannot be explained in terms of a simple

Cylindric Kleene Lattices for Program Construction 11

pair construction on classical cylindric algebras. Nevertheless, many properties,
for instance in Lemmas 8 and 14, translate from their setting into ours, and
relations in P (Xα × Xα) can of course be encoded as predicates in P X2α or
higher dimensions.7 As the elementary theory of binary relations is captured by
classical cylindric algebra, it can be expected that at least relation CLM can be
expressed in this setting, yet rather indirectly.8

6 Generalised Cylindrification

Modelling frames in Morgan’s refinement calculus through cylindrification re-
quires the consideration of sets of variables, at least finite ones, and the lib-
eration of these. Henkin, Monk and Tarski [17, §1.7] have already generalised
cylindrification from single variables to finite sets. We merely need to translate
their approach into CKL, and this is the purpose of this section. Once again, all
properties in this section have been verified with Isabelle.

For a finite subset Γ of an ordinal α, we follow Henkin, Monk and Tarski in
defining

c(∅) = id and c(κ,Γ) = cκ ◦ c(Γ),

where id is the identity function on Xα, ◦ is function composition, and c(κ,Γ)

abbreviates c({κ}∪Γ). A simple proof by induction shows that

c(Γ) ◦ c(∆) = c(Γ∪∆) (HMT1.7.3)

holds for all finite subsets Γ and ∆ of α.

Henkin, Monk and Tarski call an element x of a CKL rectangular if

c(Γ) x · c(∆) x = c(Γ∩∆) x (HMT1.10.6)

holds for all finite sets Γ and ∆. They show in the classical setting that x is
rectangular if and only if c(κ,Γ) x · c(λ,Γ) x = c(Γ) x holds for all κ, λ and finite
Γ , such that κ 6= λ. By defining rectangular elements of a CKL in the same way,
their proof transfers to CKL. We henceforth abbreviate c(Γ) 1 as 1(Γ). Our main
interest in rectangularity lies in the following inf-closure property.

Lemma 18. In every relation CKL, Id is rectangular; for all finite Γ and ∆,

Id (Γ) ∩ Id (∆) = Id (Γ∩∆).

7 This is similar to the predicative encoding of relations in the Z style [27,16], in
which the value of a variable κ in the initial state is represented by κ and its value
in the final state is represented by κ′; relational cylindrification in Z is represented
by ∃κ,κ′R, i.e. CκCκ′R in the relational model. That is, relations are encoded using
a set of variables, which for each program variable κ also contains κ′.

8 We are grateful to an anonymous referee for pointing out an encoding.

12 Dongol, Hayes, Meinicke and Struth

Proof. Defining the equivalence a ≈Γ b as ∀λ /∈ Γ. aλ = bλ, it is easy to check
that (a, b) ∈ Id (Γ) ⇔ a ≈Γ b. Hence

(a, b) ∈ Id (Γ) ∩ Id (∆) ⇔ a ≈Γ b ∧ a ≈∆ b

⇔ ∀λ. (λ /∈ Γ ⇒ aλ = bλ) ∧ (λ /∈ ∆⇒ aλ = bλ)

⇔ ∀λ. λ /∈ (Γ ∩∆)⇒ aλ = bλ

⇔ a ≈Γ∩∆ b

⇔ (a, b) ∈ Id (Γ∪∆).

ut

At the moment, we are nevertheless neither able to derive rectangularity of 1
from the CKL axioms nor to refute its derivability.

Question 19. Do the CKL axioms imply that 1 is rectangular? Otherwise, is there
any finitary extension of these axioms that implies this fact?

We henceforth indicate explicitly, whenever rectangularity of 1 is assumed.
Henkin, Monk and Tarski have also shown that the axioms of classical cylin-

dric algebras generalise to finite sets. This fact extends to CKL as well.

Lemma 20. In every CKL the following generalisations of axioms (C1)-(C11)
hold. For all finite Γ,∆,E ⊆ α,

1. c(Γ) 0 = 0,
2. x ≤ c(Γ) x,
3. c(Γ) (x · c(Γ) y) = c(Γ) x · c(Γ) y,
4. c(Γ)c(∆) x = c(∆)c(Γ) x,
5. c(Γ) (x+ y) = c(Γ) x+ c(Γ) y,
6. c(Γ) (x ; c(Γ) y) = c(Γ) x ; c(Γ) y,
7. c(Γ) (c(Γ) x ; y) = c(Γ) x ; c(Γ) y,
8. Γ ∩∆ = ∅ ⇒ 1(Γ) · 1(∆) = 1, assuming 1 is rectangular,
9. (1(Γ) ; 1(∆)) · (1(Γ) ; 1(E)) = 1(Γ); (1(∆) · 1(E)), assuming 1 is rectangular,

10. c(Γ) 1(∆) = 1(Γ) ; 1(∆),
11. c(Γ) x

+ ≤ (c(Γ) x)+.

In addition,

12. Γ ⊆ ∆⇒ c(Γ) x ≤ c(∆)x,
13. 1(Γ) ; 1(∆) = 1(Γ∪∆),
14. (1(Γ))

∗ = 1(Γ) = (1(Γ))
+.

These properties, plus rectangularity of 1, could be used for a set-based axioma-
tisation of cylindrification, in which the ck appear as special cases.

At the end of this section we study the algebra of generalised cylindrified
units 1(Γ). First of all, these units need not be closed under sups.

Lemma 21. In some (relation) CKL, generalised cylindrified units need not be
closed under sups.

Cylindric Kleene Lattices for Program Construction 13

Proof. Let X = {a, b} and α = 2. Then, for κ < α,

Idκ =

{((
x0
x1

)
,

(
y0
y1

))
∈ X2 ×X2

∣∣∣ x1−κ = y1−κ

}
.

It is easy to check that Id 6= Idk 6= Id0 ∪ Id1. In addition,((
a
b

)
,

(
b
a

))
/∈ Id0 ∪ Id1

and hence Id0 ∪ Id1 6= Id0 ; Id1 = Id ({0,1}) = X2 ×X2. Therefore Id0 ∪ Id1 is
none of the generalised cylindrified units Id , Id0, Id1, Id ({0,1}) in X2 ×X2. ut

Proposition 22. Let K be a (weak) CKL and suppose that 1 is rectangular. Let

1 = {1(Γ) | Γ is a finite subset of α}.

1. Then (1, ;, ·) forms a distributive lattice with sup ;, inf · and least element 1;
2. if α is finite, then 1 forms a finite boolean algebra with greatest element 1(α);
3. the map 1() from the set of finite subsets of α into 1 is a surjective lattice

morphism that preserves minimal and (existing) maximal elements.

Proof.

1. Composition in 1 is clearly associative, commutative and idempotent by
Lemma 20. The distributivity laws between ; and · follow from Lemma 20(9),
(10) and identity (HMT1.7.3). The absorption laws 1(Γ) ; (1(Γ) · 1(∆)) = 1(Γ)

and 1(Γ) · (1(Γ) ; 1(∆)) = 1(Γ) have been verified with Isabelle. By rectan-
gularity, 1 is closed under infs; by Lemma 20(13), the set is closed under
composition. By definition, 1(0) = 1.

2. For finite α, Lemma 20(12) implies that 1(α) is the greatest element in 1.
3. The map 1() preserves sups by Lemma 20(13), infs by rectangularity of

1, least elements by (1) and greatest elements by (2), whenever α is finite.
Surjectivity is obvious.

ut

Isabelle’s counterexample generators show that 1() need not be injective in CKL.
Hence the lattice of these finite sets need not to be isomorphic to the lattice 1.

Lemma 23. Let P (Xα ×Xα) by a relation CKL with |X| > 1. Then Id () is a
lattice isomorphism.

Proof. Relative to Proposition 22, it remains to show that Id () is injective. First
we consider singleton sets. For |X| > 1, Id is obviously a strict subset of any
Idκ. Hence κ 6= λ implies Idκ ∩ Idλ 6= Idκ by (C8) and therefore Idκ 6= Idλ.

Next, suppose Γ 6= ∆ = {λ1, . . . , λn} and, without loss of generality, that
κ ∈ Γ , but κ /∈ ∆. Then Id (∆) = Idλ1

;· · ·;Idλn by Lemma 20(13) and Idκ 6= Idλi
for all λi ∈ ∆ by injectivity on singleton sets. Thus Idκ 6≤ Id (∆), because Idκ
and the Idλi are all atoms, and therefore 1(Γ) 6= 1(∆). ut

Injectivity of 1() can therefore be assumed safely relation CKL, but other models
require additional investigations. Whether this property should be turned into
another CKL axiom is left for future work.

14 Dongol, Hayes, Meinicke and Struth

7 Propositional Refinement Calculus

Armstrong, Gomes and Struth have extended Kleene algebras with tests to re-
finement Kleene algebras with tests and derived the rules of a propositional
variant of Morgan’s refinement calculus—no frames, no local variables, no as-
signment laws—in this setting [2]. In the next section we show how the rules
of a propositional refinement calculus with frames can be derived from the CKL
axioms. Assignment laws are derived from the axioms of CKL with diagonals in
Section 12. In this section we merely adapt the definition of refinement Kleene
algebras with tests to our purposes.

Kleene algebra with tests captures propositional Hoare logic in a partial
correctness setting. For a program x ∈ K and tests p, q ∈ B, validity of the
Hoare triple can be encoded as

{p}x{q} ⇔ p ; x ≤ x ; q ⇔ p ; x ; ¬q = 0.

By the right-hand identity, the Hoare triple for precondition p, program x and
postcondition q holds if it is impossible to execute x from states where p holds
and, if the program terminates, end up in states where q does not hold. This
intuition for partial correctness is easily backed up by the relational model.

In a refinement Kleene algebra [2], a specification statement [p, q], where
p, q ∈ B, is modelled as the largest program that satisfies {p}(){q}. We adapt
this definition to CKL.

Definition 24. A refinement cylindric Kleene lattice with tests is a distributive
CKL with tests expanded by an operation [,] : B ×B → K that satisfies

p ; x ; ¬q = 0⇔ x ≤ [p, q]. (3)

It follows that [p, q] satisfies {p}[p, q]{q} and that it is indeed the greatest pro-
gram that does so. It is also easy to check that in relation CKL,

[P,Q] =
⋃
{R ⊆ Xα ×Xα | {P}R{Q}},

which further confirms this programming intuition.
In addition, CKL with tests—like Kleene algebra with tests—provides an

algebraic semantics of conditionals and while-loops that is consistent with the
relational one.

if b then x else y = b ; x+ ¬b ; y, (4)

while b do x = (b;x)∗;¬b. (5)

8 Variable frames

Our first application to program construction shows that CKL is expressive
enough to capture the variable frames of Morgan’s refinement calculus [23]. For

Cylindric Kleene Lattices for Program Construction 15

the sake of simplicity, we restrict our attention to a partial correctness setting.
In contrast to standard notations for the refinement calculus [3,23], our lattice
is the dual of the refinement lattice; the standard refinement ordering v is the
opposite of ≤. Hence y is a refinement of x, denoted x v y if and only if x ≥ y.

In this context, we fix a CKL with tests K. We call elements of K programs
and finite subsets of α frames. A frame represents the set of variables a program
may modify. The program x ·1(Γ) restricts x so that it may only modify variables
in Γ . Using Morgan’s refinement calculus notation, we define

Γ :x = x · 1(Γ) (6)

for a program x restricted to frame Γ . This is consistent with relation CKL,
where for a relation R and variable κ,

κ :R = {(a, b) | (a, b) ∈ R ∧ ∃c. a = b[κ← c]}.

This constrains the values of all variables other than κ to remain unchanged
by R, while κ is liberated and may be modified ad libitum. The generalisation
to finite sets is straightforward. The following framing laws are helpful for the
derivation of the laws of Morgan’s refinement calculus in Proposition 26 below.
They have been verified with Isabelle.

Lemma 25. In any CKL,

1. Γ :x ≤ x,
2. Γ ⊆ ∆⇒ Γ :x ≤ ∆ :x,
3. x ≤ y ⇒ Γ :x ≤ Γ :y,
4. (Γ :x); (Γ :y) ≤ Γ : (x; y),
5. (Γ :x)∗ ≤ Γ : (x∗),
6. Γ :x = x, if x ≤ 1.

By Lemma 25, it is a refinement to add or restrict a frame by (1) and (2).
By (3), framing is isotone with respect to refinement. Equivalently to frame
isotonicity, (Γ : x) + (Γ : y) ≤ Γ : (x + y). Framing distributes over sequential
composition and iteration by (4) and (5). A frame has no effect on a test by (6).
The distribution over sequential composition in (4) is only a refinement because
the right-hand side constrains variables outside Γ to be unchanged from the
initial state to the middle state and the middle state to the final state, whereas
the left-hand side only has an initial-to-final constraint.

This prepares us for the main result of this section, which adapts the refine-
ment laws derived by Armstrong, Gomes and Struth [2] to framed specifications.

Proposition 26. The following refinement laws are derivable in any refinement
CKL with tests.

1. Γ : [p, p] ≥ 1,
2. Γ : [p, q] ≥ Γ : [p′, q′] if p′ ≥ p ∧ q ≥ q′,
3. Γ : [0, 1] ≥ Γ :x,

16 Dongol, Hayes, Meinicke and Struth

4. x ≥ Γ : [1, 0],
5. Γ : [p, q] ≥ Γ : [p, r];Γ : [r, q],
6. Γ : [p, q] ≥ if b then Γ : [b · p, q] else Γ : [¬b · p, q],
7. Γ : [p,¬b · p] ≥ while b do Γ : [b · p, p].

We have verified this result with Isabelle relative to Armstrong, Gomes and
Struth’s proof. Assuming that the refinement laws obtained by deleting all oc-
currences of frames from (1)-(7) hold, we have shown that the corresponding
laws with frames are derivable using a simple formalisation within CKL without
tests and refinement statements. For (1), we have shown that 1 ≤ x implies
Γ :1 ≤ Γ :x, which is an instance of Lemma 25(3). Similarly, (2) and (3) are in-
stances of frame isotonicity. For (4), we have verified that x ≤ y implies Γ :x ≤ y,
for (5) that x ;y ≤ z implies Γ :x ;Γ :y ≤ Γ :z, for (6) that v ;x+w ;y ≤ z implies
v ; Γ : x + w ; Γ : y ≤ Γ : z whenever v, w ≤ 1, and for (7) that (v ; x)∗ ; w ≤ y
implies (v ; Γ :x)∗ ; w ≤ Γ :y whenever v, w ≤ 1. All proofs use properties from
Lemma 25. None of them depends on rectangularity of generalised cylindrified
units.

9 Local variable blocks

Next we show how local variable blocks can be expressed in CKL for which 1
is rectangular. Intuitively, a local variable block introduces a variable κ having
as scope a program x. The definition allows for the fact that outside the local
variable block κ may (or may not) be in use as a program variable. The outer κ
is unmodified by the local variable block (as represented in the definition by the
conjunction of 1(κ)) but the body of the block is free to update the local κ as it
sees fit (as represented by the cylindrification cκ x). We define a local variable
block (var κ. x) that introduces a local variable κ with scope x as

var κ. x = (cκ x) · 1(κ). (7)

It requires α to be a finite ordinal, so that the set κ = α−{κ} is finite and hence
1(κ) well defined. The following law allows a local variable κ to be introduced so
that κ can be used to hold intermediate results of a computation.

Lemma 27. Let K be a CKL for a finite ordinal α and in which 1 is rectangular.
For all κ < α and Γ ⊆ α, if κ 6∈ Γ and x ∈ Kκ, that is, cκx = x, then

Γ :x = var κ. (κ, Γ) :x.

Proof.

var κ. (κ, Γ) :x = (cκ (x · cκ 1(Γ)) · 1(κ) by definitions (6) and (7)

= x · 1(κ,Γ) · 1(κ) by (C3) and cκx = x

= x · 1((κ,Γ)∩κ) as 1 is rectangular

= x · 1(Γ) as κ 6∈ Γ , ({κ} ∪ Γ) ∩ {κ} = Γ

= Γ :x.

ut

Cylindric Kleene Lattices for Program Construction 17

Because both cylindrification and meet are isotone so is a local variable block.

Lemma 28. For any κ < α, if x ≤ y, then var κ. x ≤ var κ.y.

Introducing a local variable in a refinement is facilitated by Morgan’s law
(6.1) [23]. An algebraic variant of this refinement can be derived as follows.

Lemma 29. Let (K,B) be a CKL for a finite ordinal α and in which 1 is rect-
angular. For all κ < α and Γ ⊆ α, if κ 6∈ Γ and p, q ∈ Bκ, i.e. cκp = p and
cκq = q,

Γ : [p, q] = var κ. (κ, Γ) : [p, q].

Proof. From Lemma 27 it suffices to show [p, q] ∈ Kκ given that p, q ∈ Bκ, hence
cκ[p, q] = [p, q]. From (C2) it then suffices to show cκ[p, q] ≤ [p, q].

cκ[p, q] ≤ [p, q]⇔ p; cκ[p, q];¬q = 0 by (3)

⇔ cκp; cκ[p, q]; cκ¬q = 0 as p, q ∈ Bκ
⇔ cκ(p; [p, q];¬q) = 0 by (C6) and (C7)

⇐ p; [p, q];¬q = 0 by (C1)

⇔ [p, q] ≤ [p, q]. by (3)

ut

This law extends the refinement laws from Proposition 26 to local variable blocks.

10 Synchronous Cylindrification

Next we turn to the definition of variable assignments in CKL. This, however
requires some preparation. In this section, we set up the link between CKL-style
cylindrification and the classical one, which we need to apply to the tests in
specification statements to model assignments. Section 11 introduces diagonal
elements and substitutions as additional ingredients that are definable in CKL
and needed for assignments, which are finally discussed in Section 12.

We have already emphasised in Section 5 that relational cylindrification lib-
erates the variables in the first and second coordinates of pairs asynchronously,
and this is in particular the case for subidentities, which correspond to predicates
or sets. As an undesirable side effect, by Lemma 8(3), tests in CKL are not closed
with respect to cylindrification: an element x of a (weak) CKL is a fixpoint of
cκ if and only if x itself has already been cylindrified by cκ. In relational CKL,
therefore, no test except ∅ is a fixpoint of any Cκ, no cylindrification of any test
except ∅ is a test and Cκ[PIdX] ∩ PIdX = {∅}.

Hence if d e denotes the bijection from sets into relational subidentities, and
Ccκ denotes classical cylindrification, then dCcκ P e 6= Cκ dP e except when predi-
cate P is ∅.

Equality of dCcκ P e and Cκ dP e requires “synchronising” relational cylindri-
fications to ensure that the values of the cylindrified variable κ match in the

18 Dongol, Hayes, Meinicke and Struth

first and the second coordinate. Synchronised relational cylindrification can be
expressed in CKL as

ĉκx = cκx · 1,

so that ĈκR = CκR ∩ IdX and therefore, for any set P ,

ĈκdP e = {(a, a) | ∃c ∈ X. (a[κ← c], a[κ← c]) ∈ dP e}.

It is then easy to check that

dĈκP e = ĈκdP e

for any set P and hence bĈκP c = CcκbP c for any relational subidentity P and
the inverse bijection b c.

The definition of ĉκ and its relational instance Ĉκ implies that Ĉκ[PIdX] ⊆
PIdX . Thus relational subidentities are closed under Ĉκ. Yet, for a general CKL
with tests B 6= 1↓= {x ∈ K | x ≤ 1} it cannot be guaranteed that ĉκ[B] ⊆ B.
Yet we may require that B = 1↓, which is consistent with relational models and
many others. In fact, all applications of ĉκ in this article are restricted to tests
that satisfy this property.

The current axiomatisation of the relationship between tests and the cylin-
drifications is not sufficient to prove some properties that we know to be true
for the relational model. For example, for relations, we must add the following
additional axiom relating the two notions of cylindrification for p ∈ B, where
B = 1↓:

cκ p = 1κ ; ĉκ p = ĉκ p ; 1κ. (8)

From this assumption, we have that test ĉκ p commutes over 1κ for any test
p ∈ B, i.e. ĉκ p ; 1κ = ĉκ p ; 1κ ; ĉκ p, giving us the following lemma, which is
an important property used in Section 12 to derive properties of assignment
statements.

Lemma 30. If p = ĉ(Γ)p then, Γ : [p · q, r] = Γ : [p · q, p · r].

Proof. Refinement from left to right follows from Proposition 26(2). For the
reverse direction we begin the proof by expanding using the definition of a frame.

[p · q, r] · 1(Γ) ≤ [p · q, p · r] · 1(Γ)

⇔ [p · q, r] · 1(Γ) ≤ [p · q, p · r] property of meet

⇔ (p · q); [p · q, r] · 1(Γ); (¬p+ ¬r) = 0 by (3) and De Morgan

⇐ (p; 1(Γ);¬p = 0) ∧ ((p · q); [p · q, r];¬r = 0) distributing and simplifying

⇔ ĉ(Γ)p; 1(Γ);¬p = 0 assumption p = ĉ(Γ)p and (3)

⇔ ĉ(Γ)p; 1(Γ); ĉ(Γ)p;¬p = 0 commutativity assumption

⇔ p; 1(Γ); 0 = 0 assumption and p;¬p = 0

The later holds because 0 is an annihilator for tests.

Cylindric Kleene Lattices for Program Construction 19

Lemma 31. If p = ĉ(Γ)p and p · r2 ≤ r1 then, Γ : [p · q, r1] ≥ Γ : [p · q, r2].

Proof.

Γ : [p · q, r2] = Γ : [p · q, p · r2] by Lemma 30

≤ Γ : [p · q, r1]. by Proposition 26(2)

ut

11 Diagonals and Substitution

Our next step toward modelling assignments algebraically requires capturing
substitutions algebraically. Once again, Henkin Monk and Tarski have paved
the way for us [17, §1.5]. Yet their concept of variable substitution in classical
cylindric algebra depends on another concept, which is integral to their approach,
and we have so far neglected: that of diagonal elements, which abstract equality
in equational logic.

In standard cylindric set algebras, diagonal elements [17] are defined, for each
κ, λ < α, as

Dκλ = {x ∈ Xα | xκ = xλ}.
Henkin, Monk and Tarski [17] give a geometric interpretation of Dκλ as a hyper-
plane in Xα that is described by the equation xκ = xλ. For instance, for α = 2,
D01 corresponds to the diagonal line between the coordinate axes 0 and 1; for
α = 3, D01 is the plane spanned by that diagonal and 3-axis.

While diagonalisation could be generalised to relational diagonalisation, we
only require diagonal elements on the boolean subalgebra of tests, which is cap-
tured by the standard approach, in combination with synchronised cylindri-
fication ĉκ. Henkin, Monk and Tarski’s axioms for classical cylindric algebra
therefore lead us to the following definition.

Definition 32. A cylindric Kleene lattice with enriched tests is a CKL equipped
with a family of elements (dκλ)κ,λ<α ⊆ B = 1↓ that satisfy

dκκ = 1, (D1)

dλµ = ĉκ(dλκ · dκµ), if κ /∈ {λ, µ}, (D2)

ĉκ(dκλ · p) · ĉκ(dκλ · ¬p) = 0, if κ 6= λ. (D3)

The axioms (D1)-(D3) are precisely the diagonal axioms of classical cylindric
algebras [17]. They are applied to tests only and use ĉκ instead of cκ. Axiom
(D3) captures a notion of variable substitution. In fact, Henkin, Monk and Tarski
define

sκλ p =

{
p, if κ = λ,

ĉκ(dκλ · p), if κ 6= λ.
(9)

to indicate that λ is substituted for κ in p. Axiom (D3) can then be rewritten as
sκλ p · sκλ ¬p = 0. The substitution operator sκλ satisfies the following properties,
which have been verified with Isabelle, and turn out to be useful in the following
sections.

20 Dongol, Hayes, Meinicke and Struth

Lemma 33. Let (K,B) be a CKL with enriched tests. If p, q ∈ B and κ, λ, µ <
α, then

1. sκλ (p+ q) = sκλ p+ sκλ q, (HMT1.5.3(i))
2. ¬sκλ p = sκλ ¬p, (HMT1.5.3(ii))
3. sκλ 1 = 1,
4. sκλ (p · q) = sκλ p · sκλ q,
5. sκλ (dκµ) = dλµ if κ 6= µ, (HMT1.5.4(i))
6. sκλ (dµν) = dµν if κ /∈ {µ, ν}, (HMT1.5.4(ii))
7. sκτ (dκλ · dµν) = dτλ · dµν for distinct κ, λ, µ, ν, τ .

12 Assignments

Assignment statements are usually of the form κ := e, where e is an expres-
sion on the programming variables. Expressions are not available in CKL with
enriched tests, however we can use framed specification statements to abstract
the behaviour of assignments. For any p ∈ B we write κ :∈ p to denote a non-
deterministic assignment of variable κ to a value such that the final state of the
command satisfies test p. It is defined as

κ :∈ p = κ : [1, p].

A special case of this is the direct assignment of one variable to another, written
κ := λ, which is defined by taking predicate p to be the diagonal dκλ:

κ := λ = κ : [1, dκλ]

For example, if κ is fresh in expression e, the assignment κ := e can be encoded
using the non-deterministic assignment command as κ :∈(κ = e), where (κ = e)
is abstracted to a test in the algebra. For the more general case we can choose
a variable λ that is fresh in e and write

(var λ. λ := κ ; κ :∈(κ = e[κ\λ]))

where, in the program model, e[κ\λ] is the expression e with λ substituted for
κ, but in the algebra (κ = e[κ\λ]) is simply abstracted as a test.

The following propositions are used to verify the algebraic equivalent of the
assignment law defined by Morgan [23, p.8]. In order to more simply represent
the precondition, we introduce two notations on tests: the inner cylindrification
c∂κp is the De Morgan dual of ĉκ and corresponds to universal quantification
in first order logic [17, §1.4]; and p → q is a shorthand for implication in the
boolean algebra of tests.

c∂κp = ¬ĉκ¬p, (10)

p→ q = ¬p+ q. (11)

In the proposition below the test c∂κ(r → q) can be interpreted as saying that for
all values of κ, test r implies q, i.e. it is a test describing the states from which
substituting κ for any value satisfying r will certainly result in a post-state q.

Cylindric Kleene Lattices for Program Construction 21

Proposition 34. Suppose B is the test subalgebra of a CKL with enriched tests.
If q, r ∈ B and κ < α and p ≤ c∂κ(r → q),

κ : [p, q] ≥ κ :∈ r. (12)

Proof. The application of Lemma 31 requires c∂κ(r → q) · r ≤ q, which can be
shown as follows.

ĉκ(r · ¬q) ≥ r · ¬q by (C2)

⇔ ¬ĉκ(r · ¬q) ≤ ¬(r · ¬q) negating both sides and reversing the order

⇒ c∂κ(r → q) · r ≤ (¬r + q) · r by definition of c∂ and conjoin r to both sides

⇔ c∂κ(r → q) · r ≤ q · r boolean simplification

⇒ c∂κ(r → q) · r ≤ q as q · r ≤ q.

It also requires that ĉ(Γ)c
∂
(Γ)p = c∂(Γ)p, which has been shown in [17, Theorem

1.4.4(ii)].

κ : [p, q] ≥ κ : [c∂κ(r → q), q] by Lemma 26(2)

≥ κ : [c∂κ(r → q), r] by Lemma 31 as c∂κ(r → q) · r ≤ q
≥ κ : [1, r] by Lemma 26(2)

= κ :∈ r From (12).

ut

When r is dκλ, the test c∂κ(r → q) simplifies to sκλ q, the substitution of λ for
κ in test q.

Proposition 35. Suppose B is the test subalgebra of a CKL with enriched tests.
If q ∈ B and κ, λ < α and p ≤ sκλ q,

κ : [p, q] ≥ κ := λ.

Proof. We have c∂κ(dκλ → q) = ¬cκ(dκλ · ¬q) = ¬sκλ ¬q = sκλ q by Lemma 33(2).

κ : [p, q] ≥ κ : [sκλ q, q] by Proposition 26(2)

= κ : [c∂κ(dκλ → q), q] by above reasoning

≥ κ :∈ dκλ taking r to be dκλ in Proposition 34

= κ := λ by definition (12).

Proposition 34 and Proposition 35 encode the assignment law defined by
Morgan [23, p.8] for our non-deterministic assignment statement, and for the
special case where we assign one variable directly to another. These propositions
can be equivalently expressed using Hoare logic using the specification statement
definition (3) and the Hoare logic encoding.

22 Dongol, Hayes, Meinicke and Struth

Proposition 36. Suppose B is the test subalgebra of a CKL with enriched tests.
If p ∈ B and κ, λ < α then

{p} κ :∈ r {q}, if p ≤ c∂κ(r → q),

{p} κ := λ {q}, if p ≤ sκλ q.

Frames and diagonals together allow one to make use of logical variables and
constants (e.g., natural numbers) within a specification. In Example 38, we con-
sider a derivation of a program that swaps the values of at indices λ and κ.
This example is given by Morgan [23]; the difference here is that the deriva-
tion is purely algebraic. The example uses Morgan’s following assignment law,
in which a specification statement is refined to another specification statement
followed by an assignment command. The next lemma derives this in the algebra.

Lemma 37. Suppose B is the test subalgebra of a CKL with enriched tests. If
p, q ∈ B and κ, λ, µ < α, then

λ, κ : [p, q] ≥ λ, κ : [p, sκµ q];κ := µ.

Proof.

λ, κ : [p, q] ≥ λ, κ : [p, sκµ q];λ, κ : [sκµ q, q] by Proposition 26(5)

≥ λ, κ : [p, sκµ q];κ : [sκµ q, q] by Lemma 25(2)

≥ λ, κ : [p, sκµ q];κ := µ by Proposition 35.

ut

Example 38. The swapping variables example can be handled entirely within
the algebra. Suppose κ1, κ2, λ1, λ2, τ < α are distinct. As in many refinement
proofs (see [23]), λ1 and λ2 are logical indices used to specify the initial values
of program variables κ1 and κ2. The first step uses Lemma 27 to introduce local
variable τ that we use to temporarily store the value of κ2:

κ1, κ2 : [dκ1λ1
· dκ2λ2

, dκ1λ2
· dκ2λ1

]

= var τ. τ, κ1, κ2 : [dκ1λ1
· dκ2λ2

, dκ1λ2
· dκ2λ1

].

Using Lemma 28 this can be refined by refining the body of the local variable
block as follows.

τ, κ1, κ2 : [dκ1λ1
· dκ2λ2

, dκ1λ2
· dκ2λ1

]

≥ τ, κ1, κ2 : [dκ1λ1
· dκ2λ2

, sκ1
τ (dκ1λ2

· dκ2λ1
)];κ1 := τ by Lemma 37

≥ τ, κ1, κ2 : [dκ1λ1
· dκ2λ2

, dτλ2
· dκ2λ1

];κ1 := τ by Lemma 33(7).

Applying this pattern twice yields

τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dτλ2 · dκ2λ1];κ1 := τ

≥ τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dτλ2 · dκ1λ1];κ2 := κ1;κ1 := τ

≥ τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dκ2λ2 · dκ1λ1]; τ := κ2;κ2 := κ1;κ1 := τ

≥ 1; τ := κ2;κ2 := κ1;κ1 := τ by Proposition 26(1).

Cylindric Kleene Lattices for Program Construction 23

Eliminating the identity 1 and substituting the refined body back in the local
variable block, the final code is

var τ. (τ := κ2;κ2 := κ1;κ1 := τ).

13 Beyond Cylindrification: Liberation Algebras

An interesting axiomatic question arises from the fact that, by Lemmas 16 and
49, the identity

cκ x = 1κ ; x ; 1κ

holds in (weak) relational CKL, whereas, by Lemma 11, it is not derivable in
CKL. On the one hand, non-derivability is desirable, because the identity fails in
program trace models of CKL [21]. On the other hand, it shifts the focus from
cylindrification to identities 1κ and raises the question of directly axiomatising
elements 1κ for κ < α directly over (weak) Kleene lattices and defining the cylin-
drification operators cκ explicitly via the identity above. This section describes
the initial steps for such an approach. The elements 1κ are now written more
simply as κ for κ < α.

Definition 39 (LLM). A (weak) liberation l-monoid is a (weak) l-monoid L
that is equipped with a family (κ)κ<α of elements that satisfy

κ ; 0 = 0, (L1)

1 ≤ κ, (L2)

κ ; (x · (κ ; y)) = (κ ; x) · (κ ; y), (L3)

(x · (y ; κ)) ; κ = (x ; κ) · (y ; κ), (L4)

κ ; λ = λ ; κ, (L5)

κ 6= λ ⇒ κ · λ = 1, (L6)

(κ ; λ) · (κ ; µ) = κ ; (λ · µ), (L7)

(κ ; µ) · (λ ; µ) = (κ · λ) ; µ. (L8)

As expected, there is a close correspondence between these axioms and axioms
(C1)-(C10), although analogues of (C5)-(C7) and (C10) are derivable in this
context, and therefore redundant.

Definition 40 (LKL). A (weak) liberation Kleene lattice is a (weak) Kleene
lattice with a family (κ)κ<α of elements that satisfy (L1)-(L8).

We have checked independence of these axioms in Isabelle. Extensions to (weak)
liberation Kleene lattices with tests are straightforward.

Proposition 41. Every weak LLM is a weak CLM with cκx = κ ; x ; κ.

24 Dongol, Hayes, Meinicke and Struth

Rewriting the CLM axioms with cκx = κ ;x ;κ and deriving the results from the
LLM axioms is straightforward with Isabelle. Axiom (C6), for instance, becomes
κ ;x ;κ ; y ;κ ;κ = κ ;x ;κ ;κ ; y ;κ, which is derivable because any κ can be shown
to be an idempotent with respect to ; in LLM by taking x and y to both be 1 in
(L3). Axiom (C3) becomes κ ; (x · (κ ; y ; κ)) ; κ = (κ ; x ; κ) · (κ ; y ; κ), which can
be obtained from (L3) and (L4).

Unlike for CKL, a special star axiom is not needed for liberation algebras.
The following lemma has been obtained with Isabelle.

Lemma 42. In every weak LKL,

1. x+ ; κ ≤ (x ; κ)+,
2. κ ; x+ ≤ (κ ; x)+,
3. κ ; x+ ; κ ≤ (κ ; x ; κ)+.

The proof of (1) is very simple: x+ ; κ = x∗ ; x ; κ ≤ (x ; κ)∗ ; x ; κ = (x ; κ)+.
Using the last identity then yields the following result.

Proposition 43. Every weak LKL is a weak CKL with cκx = κ ; x ; κ.

In addition, the LKL axioms are sound with respect to relational models.

Proposition 44. The (weak) LKL axioms hold in the relational (fault) model
with κ interpreted as Idκ for all κ < α.

Proof. The relational variants of the LKL axioms have been verified with Isabelle.
An algebraic proof for the weak case is given in Proposition 50, Appendix B. It
has been checked with Isabelle. ut

The next two facts generalise Lemma 9 and Proposition 15 from Section 4.

Lemma 45. In every weak LLM, κ ; () and () ; κ are closure operators.

Writing Kl
κ for the set of fixpoints of κ ; (), Kr

κ for those of () ; κ and Kκ for
those of κ ; () ; κ yields the following result.

Proposition 46. Let K be a (weak) LKL and let κ < α. Then

1. (Kl
κ,+, ·, ;, 0, κ, ()+) is a (weak) sub-Kleene lattice of K with left unit κ,

2. (Kr
κ,+, ·, ;, 0, κ, ()+) is a sub-Kleene lattice of L with right unit κ and if K

is a strong LKL, then Kl
κ and Kr

κ are isomorphic,
3. (Kκ,+, ·, ;, 0, κ, ()+) is a sub-Kleene lattice of Kl

κ and Kr
κ.

The proofs are very similar to those for cκ.
The results for κ ; () and () ; κ reveal a duality in relational cylindrification

without faults that is not present in the traditional approach. We already pointed
out in Section 5 that, in the relational model, Idκ ; R corresponds to a left-
handed cylidrification of R and R ; Idκ to its right-handed opposite. One can
therefore introduce handedness via opposition to cylindrification over l-monoids
by axiomatising left-handed cylindrification clκ and right-handed cylindrification

Cylindric Kleene Lattices for Program Construction 25

crκ and split the axioms (C6) and (C7) accordingly. This yields a more fine-
grained view on cylindrification in models with opposition duality. In addition,
left-handed and right-handed cylindrifications commute (i.e. clκ ◦ crλ = crλ ◦ clκ)
and cκ = clκ ◦ crκ holds in the relational model but not in general. Details have
been worked out in a companion article [21]. The handed cylindrifications are
akin to forward and backward modal operators, yet defined over Kleene lattices
instead of boolean algebras.

14 Conclusion

We have shown that cylindrification can be adapted to Kleene lattices and their
relational models in such a way that variable assignments, frames and local
variable blocks can be modelled. Based on this, we have derived the laws of
Morgan’s refinement calculus and the rules of Hoare logic, including those for
assignments. The scope of algebraic approaches to program construction has
therefore been extended, with the potential of fully algebraic reasoning about
imperative programs.

Nevertheless, many questions about cylindric Kleene lattices and their rel-
atives remain open and deserve further investigation. Instead of the obvious
questions on completeness or decidability, we focus on conceptual ones.

First, it is easy to check that relational cylindrifications preserves arbitrary
sups and hence have upper adjoints. This situation is well known from classical
cylindric algebra, where the standard outer cylindrifications cκ are accompanied
by inner cylindrifications c∂κ that are related by De Morgan duality. Geomet-
rically, these describe greatest cylinders with respect to κ that are contained
in a given set. In cylindric algebras of formulas, inner cylindrification gives the
algebra of universal quantification. In an extension of CKL, where lattices need
not be complemented, dual cylindrifications can be axiomatised by adjunction.
In extensions of LKL, they can be defined explicitly as c∂κ x = 1κ\x/1κ, where \
and / are residuals, as they appear in action algebras [18] and action logic [26].
Our Isabelle components already contain axiomatisations for these structures,
but so far we do not have any use for them.

Second, our refinement calculus and Hoare logic are restricted to partial
program correctness for the sake of simplicity; yet the relational fault model
is relevant to total correctness and our Isabelle components are based on weak
cylindric Conway lattices and weak liberation Conway lattices, in which iteration
is weak enough to be either finite, as in Kleene lattices, or possibly infinite, as
in demonic refinement algebra [29]. Almost all properties presented in our paper
hold in fact in this more general setting, and our relational models are a fortiori
models of these generalisations. The relevance of these algebras to models with
finite or possibly infinite traces, and the derivation of while rules and refinement
laws for total program correctness remain to be explored.

For concurrent programs with a semantics based on a set of traces, cylindri-
fication can be applied to liberate a variable κ in every state of each trace, in
the same way that liberation of a relation liberates κ in both the initial and final

26 Dongol, Hayes, Meinicke and Struth

states. In that setting liberation can be used in the definition of a local variable
block in a similar fashion to the way it is used here [21]. A trace-based semantics
for the liberation operator was given in [5, §4.6 and §5.6].9 The generalisation
of cylindric algebra presented in this paper applies directly to the trace-based
model used for concurrency. That model also uses sets, binary relations, a subset
of commands that form instantaneous tests (isomorphic to sets of states), subsets
of commands representing program steps and environment steps (each of which
is isomorphic to binary relations on states). Factoring out the cylindric algebra
and applying it in each of these contexts allows one to reuse the properties of
cylindric algebra in each of these contexts, thus simplifying the mechanisation
of the theory.

Finally, while part of the theory and many of the proofs in this article have
been formalised with Isabelle/HOL, the question whether our approach may lead
to program construction and verification components that support an algebraic
treatment of variable assignments requires further exploration. This seems a
particularly promising avenue for future research.

Acknowledgements. We thank Simon Doherty for discussions on earlier versions
of this work.

References

1. H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene lattices.
Theoretical Computer Science, 412(52):7099–7108, 2011.

2. A. Armstrong, V. B. F. Gomes, and G. Struth. Building program construction
and verification tools from algebraic principles. Formal Aspects of Computing,
28(2):265–293, 2016.

3. R.-J. Back and J. von Wright. Refinement calculus - a systematic introduction.
Springer, 1999.

4. G. Birkhoff. Lattice Theory. American Mathematical Society, 1940.
5. R. J. Colvin, I. J. Hayes, and L. A. Meinicke. Designing a semantic model for a

wide-spectrum language with concurrency. Formal Aspects of Computing, 29:853–
875, 2016.

6. J. Cranch, M. R. Laurence, and G. Struth. Completeness results for omega-regular
algebras. J Logical and Algebric Methods in Programming, 84(3):402–425, 2015.

7. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM TOCL,
7(4):798–833, 2006.

8. J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of
Computer Programming, 76(3):181–203, 2011.

9. The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

10. B. Dongol, V. F. B. Gomes, I. J. Hayes, and G. Struth. Partial semigroups and
convolution algebras. Archive of Formal Proofs, 2017, 2017.

11. B. Dongol, I. J. Hayes, and G. Struth. Relational convolution, generalised modal-
ities and incidence algebras. CoRR, abs/1702.04603, 2017.

9 In that paper cκx is written x\κ.

Cylindric Kleene Lattices for Program Construction 27

12. T. Ehm, B. Möller, and G. Struth. Kleene modules. In R. Berghammer, B. Möller,
and G. Struth, editors, RAMiCS 2003, volume 3051 of LNCS, pages 112–124.
Springer, 2004.

13. M. J. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces
with names. In M. Hofmann, editor, FOSSACS 2011, volume 6604 of LNCS, pages
365–380. Springer, 2011.

14. R. Giacobazzi, S. K. Debray, and G. Levi. A generalized semantics for constraint
logic programs. In FGCS, pages 581–591, 1992.

15. V. B. F. Gomes and G. Struth. Modal Kleene algebra applied to program correct-
ness. In J. S. Fitzgerald, C. L. Heitmeyer, S. Gnesi, and A. Philippou, editors, FM
2016, volume 9995 of LNCS, pages 310–325, 2016.

16. Ian Hayes, editor. Specification Case Studies. Prentice Hall International, second
edition, 1993.

17. Leon Henkin, James Donald Monk, and Alfred Tarski. Cylindric Algebras, Part I,
volume 64 of Studies in logic and the foundations of mathematics. North-Holland
Pub. Co., 1971.

18. D. Kozen. On action algebras. In J. van Eijk and A. Visser, editors, Logic and
Information Flow, pages 78–88. MIT Press, 1994.

19. D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–
443, 1997.

20. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log., 1(1):60–76, 2000.

21. L. A. Meinicke and I. J. Hayes. Handling localisation in rely/guarantee concur-
rency: An algebraic approach. arXiv:?? [cs.LO], 2019.

22. B. Möller and G. Struth. wp is wlp. In W. MacCaull, M. Winter, and I. Düntsch,
editors, RelMiCS/AKA 2005, volume 3929 of LNCS, pages 200–211. Springer, 2006.

23. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

24. C. C. Morgan. Programming from Specifications. Prentice Hall, second edition,
1994.

25. D. Pous. Kleene algebra with tests and Coq tools for while programs. In S. Blazy,
C. Paulin-Mohring, and D. Pichardie, editors, ITP 2013, volume 7998 of LNCS,
pages 180–196. Springer, 2013.

26. V. A. Pratt. Action logic and pure induction. In J. van Eijck, editor, JELIA ’90,
volume 478 of LNCS, pages 97–120. Springer, 1991.

27. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
second edition, 1992.

28. G. Struth. Hoare semigroups. Mathematical Structures in Computer Science,
28(6):775–799, 2018.

29. J. von Wright. Towards a refinement algebra. Science of Computer Programming,
51(1-2):23–45, 2004.

30. C. Wells. Some applications of the wreath product construction. The American
Mathematical Monthly, 83(5):317–338, 1976.

A Construction of Weak Kleene Lattices

Instead of proving Proposition 6, we show that it is a corollary to a standard
semidirect product construction, which is well known from semigroup theory. All
proofs in this appendix have been verified with Isabelle.

https://arxiv.org/abs/????

28 Dongol, Hayes, Meinicke and Struth

An l-monoid module of an l-monoid L and a semilattice S with least element
0 is an action ◦ : L→ S → S that satisfies

(p ; q) ◦ x = p ◦ (q ◦ x),

(p+ q) ◦ x = p ◦ x+ q ◦ x,
p ◦ (x+ y) = p ◦ x+ p ◦ y,

1 ◦ x = x,

0 ◦ x = 0.

It follows that p ◦ 0 = 0.
The semidirect product Ln S on L× S is defined by

(p, x) n (q, y) = (p ; q, x+ p ◦ y).

The relational redefinition of composition in Section 3 is a simple instance of this
standard algebraic concept. It is easy to check that (1, 0) is the unit of n and
(0, 0) a left annihilator. In addition, we define join and meet pointwise on pairs
as (p, x) + (q, y) = (p + q, x + y) and (p, x) · (q, y) = (p · q, x · y). The following
fact is routine. Most axioms have already been checked elsewhere [6,11].

Proposition 47. Let L be an l-monoid and S a semilattice with 0. Then LnS
forms a weak l-monoid.

If K is a Kleene lattice, we define a Kleene lattice module by adding the axiom

x+ p ◦ y ≤ y ⇒ p∗ ◦ x ≤ y.

Hence the action axiom for Kleene lattice modules are essentially those for Kleene
modules [12]. Finally, we define the star on products as

(p, x)∗ = (p∗, p∗ ◦ x).

It follows that (p, x)+ = (p+, p∗ ◦ x).
Proposition 47 then extends as follows.

Theorem 48. Let K be a Kleene lattice and S a semilattice with 0. Then KnS
forms a weak Kleene lattice.

Dongol, Hayes and Struth [11] present a similar result in the less general set-
ting of quantale modules, which however captures the relational fault model in
Section 3. A formalisation with Isabelle can be found in the Archive of Formal
Proofs [10], including a verification of the properties of the relational star pre-
sented in Section 3. Cranch, Laurence and Struth [6] present a second proof in
the more general setting of regular algebras that satisfy strictly weaker induction
axioms. It gives a good impression of the manipulations needed in our present
proof. Möller and Struth [22] present a third proof for total correctness in the
setting of modal Kleene algebras. Instead of semidirect products, it is based on
wreath products (cf. [30]).

Cylindric Kleene Lattices for Program Construction 29

B Construction of Weak Liberation Kleene Lattices

Instead of proving Proposition 44 for relational cylindrification we give an al-
gebraic proof based on a new algebraic definition. This proof also supports an
indirect proof of Proposition 6. All proofs in this appendix have once again been
checked with Isabelle.

A cylindric Kleene lattice module is a Kleene lattice module over a cylindric
Kleene lattice with cylindrification defined by

c̃κ (p, x) = (cκ p, 1κ ◦ x).

By this definition, c̃κ (1, 0) = (1κ, 0) and (p, x) n (1κ, 0) = (p ; 1κ, x).
First we derive an algebraic variant of Lemma 16 that is suitable for the

relational fault model.

Lemma 49. Let L be a CKL and S a semilattice with 0. Then

cκ p = 1κ ◦ p ◦ 1κ ⇒ c̃κ (p, x) = c̃κ (1, 0) n (p, x) n c̃κ (1, 0).

Next we turn to the algebraic proof that subsumes Proposition 44.
A Liberation Kleene lattice module is a Kleene lattice module defined over a

liberation Kleene lattice.

Proposition 50. Let K be a LKL and S a semilattice with 0, such that

1κ ◦ (x · (1κ ◦ y)) = (1κ ◦ x) · (1κ ◦ y)

holds for all x, y ∈ S. Then K n S forms a weak LKL.

	Cylindric Kleene Lattices for Program Construction

