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Abstract. Seismic image analysis plays a crucial role in a wide range of
industrial applications and has been receiving significant attention. One
of the essential challenges of seismic imaging is detecting subsurface salt
structure which is indispensable for the identification of hydrocarbon
reservoirs and drill path planning. Unfortunately, the exact identifica-
tion of large salt deposits is notoriously difficult and professional seismic
imaging often requires expert human interpretation of salt bodies. Convo-
lutional neural networks (CNNs) have been successfully applied in many
fields, and several attempts have been made in the field of seismic imag-
ing. But the high cost of manual annotations by geophysics experts and
scarce publicly available labeled datasets hinder the performance of the
existing CNN-based methods. In this work, we propose a semi-supervised
method for segmentation (delineation) of salt bodies in seismic images
which utilizes unlabeled data for multi-round self-training. To reduce er-
ror amplification during self-training we propose a scheme which uses an
ensemble of CNNs. We show that our approach outperforms state-of-the-
art on the TGS Salt Identification Challenge dataset and is ranked the
first among the 3234 competing methods. The source code is available
at GitHub.

1 Introduction

One of the major challenges of seismic imaging is localization and delineation
of subsurface salt bodies. The precise location of salt deposits helps to identify
reservoirs of hydrocarbons, such as crude oil or natural gas, which are trapped
by overlying rock-salt formations due to the exceedingly small permeability of
the latter.

Modern seismic imaging techniques result in large amounts of unlabeled data
which have to be interpreted. Unfortunately, the exact identification of large salt
deposits is notoriously difficult [21] and often requires manual interpretation of
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Fig. 1. Progress of the validation loss (top) and the validation mAP score (bottom)
during training our U-ResNet34 model on TGS Salt Identification Challenge dataset
[22] for K = 3 rounds. Every next round the model converges faster and achieves
better local minima. Loss spikes every 50 epochs correspond to the cycles of the cosine
annealing learning rate schedule.

seismic images by the domain experts. Despite being highly time-consuming
and expensive, manual interpretation induces a subjective human bias, which
can lead to potentially dangerous situations for oil and gas company drillers.

In recent years, a number of tools for automatic or semi-automatic seismic
interpretation have been proposed [37,13,18,53,47,3,8,46] to speed-up the inter-
pretation process and, to some extent, reduce the human bias. However, these
methods do not generalize well for complex cases since they rely on handcrafted
features.

The advent of convolutional neural networks (CNNs) brought significant ad-
vancements in different problems and several attempts have been made to apply
CNNs in the field of seismic imaging [13,11,45,52]. CNNs overcome the need for
manual feature design and show superior performance on the tasks of the salt
body delineation compared to the methods based on the handcrafted features.
However, a low amount of publicly available annotated seismic images hinder
the performance of the existing CNN-based methods since CNNs are notoriously
hungry for data.

To overcome the shortage of labeled data, we propose a semi-supervised
method for segmentation of salt bodies in seismic images which can make use
of abundant unlabeled data. The unlabeled images are utilized for self-training
[12]. The proposed self-training procedure (see Fig. 2) is an iterative process
which extends the labeled dataset by alternating between training the model
and pseudo-labeling (i.e. imputing the labels on the unlabeled data). We do K
rounds of retraining the model (see the straining in Fig. 1). At the first round,
we train model solely on the available labeled data and then predict labels on the
unlabeled data. Every next round we use for training both original labeled data
and the pseudo-labels obtained at the previous round. The error amplification is
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Fig. 2. The pipeline of the proposed self-training procedure. We do K rounds of re-
training the model. Every round we train the model on the available labeled data
and predicted confident pseudo-labels for the unlabeled data. All pseudo-labels are
recalculated at the end of every round.

a well-known problem in self-training [29] when the error is accumulated during
self-training rounds and the models tend to generate less reliable predictions
during the time. To mitigate it we propose to train an ensemble of CNNs and
predict labels on the unlabeled data using the average voting of the models in the
ensemble. Average voting scheme corrects examples which could be mislabeled
by one of the models, hence facilitates more reliable pseudo-labeling. Moreover,
to further reduce the error amplification we retrain our models from scratch and
predict labels for all unlabeled examples every round in similar spirit as [29].

We conduct experiments on the largest available to our knowledge dataset
for salt body delineation — TGS Salt Identification Challenge dataset [22]. This
dataset was collected by TGS, the world’s leading geoscience data company, and
was provided in the Kaggle competition. Our approach achieves state-of-the-art
performance on this dataset featuring the first place in the global ranking among
3234 competitors.

In summary, the contribution of this work is as follows: (i) we propose an
iterative self-training approach for semantic segmentation which benefits from
unlabeled data; (ii) we build a sophisticated network architecture which is tai-
lored for the task of salt body delineation (see Fig. 3); (iii) we evaluate our
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Fig. 3. The outline of the U-ResNet34/U-ResNeXt50 architecture proposed. The dif-
ference between U-ResNet34 and U-ResNeXt50 is only in the structure of the encoder
blocks (green). We insert scSE modules [39] after each encoder (green) and decoder
(purple) blocks. Encoder blocks are connected with the corresponding decoder blocks
using skip-connections. We use a Feature Pyramid Attention module (FPA) [15] after
the last encoder block. All outputs of the decoder blocks are upsampled to have the
same size as the output of the last decoder bock. Obtained feature maps are concate-
nated together into hypercolumns [16], which are used for prediction of the segmenta-
tion mask after applying two convolutional layers.

approach on a real-world salt body delineation dataset — TGS Salt Identifica-
tion Challenge [22], where the proposed method achieves the state-of-the-art
performance outperforming all other competing teams.

2 Related work

A lot of research efforts have been devoted to interpretation of seismic images
[11,37,53,47,3]. With the advent of CNNs, several approaches have been proposed
for supervised seismic image interpretation using deep learning [9,43,52]. But
the small size of the available datasets and lack of the annotations seismic image
interpretation did not allow to unfold the full potential of the CNNs.

The recent trend in the Computer Vision community is unsupervised or self-
supervised learning [10,34,25,1,2,40,20,28,5] which can make use of abundant
unlabeled visual data avallable on the internet and avoid costly manual anno-
tations. Another class of methods which lies between completely unsupervised
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Fig. 4. Example of the 6x12 mosaic of train patches from the TGS Salt Identification
Challenge dataset [22]. Each patch is 101 x 101 pixels. Green patches denote patches
without the salt boundary; green/red patches indicate patches containing the salt body
boundary; black color means missing mosaic patches.

methods and supervised methods is semi-supervised learning. It jointly utilizes
a large amount of unlabeled data, together with the labeled data [54]. The semi-
supervised technique most relevant to our work is self-training [50,30,42]. In the
self-training, a classifier is trained with an initially small number of labeled ex-
amples, then it predicts labels for unlabeled points. After that, the classifier is
retrained with its own most confident predictions, together with initially pro-
vided labeled examples. However existing self-training approaches [12,51,32,31]
are based on hand-crafted features which are much more limited than the fea-
tures learned by CNNs. [27] and [14] use CNNs in the self-training framework,
but they apply it to relatively simple classification datasets like MNIST [26)]
and CIFAR-10 [24]. The most relevant self-training approach which is based on
CNN features is [14], which is designed for image classification task and uses
pretrained CNNs as the fixed feature-extractors while training SVM classifier on
top. In contrast, our approach is the first to our knowledge which proposes a self-
training procedure for semantic segmentation task and it learns CNN features
end-to-end. Moreover, our method reduces the error amplification [29] by using
an ensemble of the networks and by retraining from scratch and recalculating
pseudo-labels every training round.

Another work related to ours is [36]. Authors try to mitigate the high cost
of manual annotations of seismic images by introducing an approach which can
utilize sparse annotations instead of the commonly used dense segmentation
masks.
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3 Method

The salt body delineation problem can be reduced to the task of semantic image
segmentation [11], therefore we design our model to predict a binary segmenta-
tion mask [7] for the salt body. We will further use the terms segmentation and
delineation interchangeably in the text.

In this section, we first present the proposed iterative self-training procedure
(Sect. 3.1) which can make use of unlabeled samples for training. Then we de-
scribe the ensemble used for training and the network architectures in detail
(Sect. 3.2).

3.1 Self-training process

Since the labeled data available for the salt body delineation task is scarce, we
propose to produce pseudo-labels for unlabeled data and use the pseudo-labels
along with ground truth labels to train the model. We refer to this process as
self-training. Our self-training procedure is a K-round iterative process where
each round has 2 steps: (a) training the model using the labeled dataset extended
with pseudo-labels; (b) updating pseudo-labels for unlabeled data.

During the first round, we train the model using the ground truth labels only.
Then we predict pseudo-labels for all unlabeled data by assigning to each pixel
in the image the most probable class. Unreliable predictions can be filtered out
by removing images with the low-confidence pseudo-labels (i.e. when confidence
conf(-) < thresh). We define the confidence of the predicted segmentation mask
as the negative mean entropy of the pixel labels in the mask.

Every next round, we first (a) retrain the model using jointly ground truth
labels and confident pseudo-labels; and then (b) update the pseudo-labels for all
unlabeled data using the new model. It is crucial to reset model weights before
every round of self-training not to accumulate errors in pseudo-labels during
multiple rounds [29].

To further improve the robustness of the generated pseudo-labels and pre-
vent over-fitting to the errors of the sole model, we jointly train an ensemble
of CNNs with different backbone architectures. In this case, the pseudo-labels
are produced by averaging the predictions of all models in the ensemble. And
every next round each model in the ensemble utilizes the confident knowledge
of the entire ensemble from the previous round expressed and aggregated in the
pseudo-labels. We summarize the full self-training procedure in Algorithm 1 and
visualize it in Fig. 2.

3.2 Network architecture

We start building our networks inspired by seminal U-Net architecture [38],
which has an encoder, a decoder and skip connections between encoder and
decoder blocks with similar spatial resolution. However, training the encoder
from scratch is difficult given a limited amount of labeled data. Hence, we opt
to use an Imagenet pretrained CNN as the backbone for the encoder [19]. In
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Algorithm 1: The proposed self-training procedure
Input: Labeled data Dyt = (X,Y’), where X is the set of images and Y is their
corresponding ground truth labels; unlabeled images X; number of
training epochs T'; number of self-training rounds K; model ¢(-, 0) with
learnable parameters 6.

1 D < Dyy; > initialize the training set
2 for k< 1 to K do

3 Initialize 0 using a pretrained Imagenet model;

4 Train model ¢(-,0) on D for T epochs;

5 Predict pseudo-labels Y for each element in X ;

6 Dpseudo <~ (X7 Y)a

7 Remove images with low-confidence pseudo-labels from Dpseudo;

8 D <+ Dyt U Dpscudo;

9 end

Result: Model parameters 6.

particular, we build an ensemble of two models: the first one uses ResNet34 [17]
as the encoder backbone (we will refer to it as U-ResNet34) and the second
one with ResNeXt50 [48] as the encoder backbone (we will refer to it as U-
ResNeXt50).

We propose a number of modifications to the architecture to make it more
effective for salt body delineation task. We use several types of attention mech-
anisms in the network. The encoder and decoder comsist of repeating blocks
separated by down-sampling and up-sampling respectively. First, we insert con-
current spatial and channel Squeeze & Excitation modules (scSE) [39] after each
encoder and decoder block. scSE modules can be interpreted as some sort of
attention mechanism: they rescale individual dimensions of the feature maps
by increasing the importance of informative features and suppressing the less
relevant ones.

Additionally, in the bottleneck block between the encoder and the decoder
we use Feature Pyramid Attention module [15], which increases the receptive
field by fusing features from different pyramid scales.

Another powerful design decision for exploiting feature maps from different
scales is Hypercolumns [16]. Instead of using only the last layer of the decoder
for prediction of the segmentation mask, we stack the upsampled feature maps
from all decoder blocks and use them as the input to the final layer. It allows
getting more precise localization and captures the semantics at the same time.
To produce the final segmentation mask, we feed Hypercolumns through a 3 x 3
convolution followed by the final 1 x 1 convolution. We present our final network
architecture in Fig. 3.
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Table 1. Results and ablation studies. The first section of the table shows the perfor-
mance of a single U-ResNet34 without any usage of pseudo-labels. The second block
shows the quality increase after several self-training rounds for a single U-ResNet34
model. The third block shows results for multiple self-training rounds using the ensem-
ble of U-ResNet34 and U-ResNeXt50 networks which achieves state-of-the-art perfor-
mance. Finally, our best model is compared with another approach presented in [23]
on the same dataset.

Method Private test mAP Public test mAP Private LB place

Our U-ResNet34 Round 1 ablation studies

Single best snapshot 0.8682 0.8431 200
+ TTA 0.8739 (40.6%) 0.8498 144
+ Multiple snapshots 0.8777 (+0.4%) 0.8552 99
+ Multiple folds 0.8834 (+0.6%) 0.8629 61
+ Train 200 epochs more 0.8845 (+0.1%) 0.8644 51
Our U-ResNet34
Round 1 0.8834 0.8629 61
Round 2 0.8898 (40.6%) 0.8719 20
Round 3 0.8915 (+0.2%) 0.8715 12
Ensemble of Rounds 2 and 3 0.8917 (4+0.1%) 0.8727 10
Our U-ResNet34 + U-ResNeXt50

Round 1 0.8853 0.8677 46
Round 2 0.8919 (+0.7%) 0.8748 10
Round 3 0.8953 (40.4%) 0.8759 5

Ensemble of Rounds 2 and 3 0.8964 (+0.1%) 0.8766 1

[23] 0.8880 0.8663 27
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4 Experiments

4.1 Dataset: TGS Salt Identification Challenge

TGS Salt Identification Challenge is a Machine Learning competition on a Kag-
gle platform [22]. The data for this competition represents 2D image slices of
3D view of earth’s interior. It was collected using reflection seismology method
(similar to X-ray, sonar, and echolocation). For this reason, input data is a set of
single-channel grayscale images showing the boundaries between different rock
types at various locations chosen at random in the subsurface. For the competi-
tion purposes, large-size images were transformed into 101 x 101 pixel crops by
the organizers. Further, each pixel is classified as either salt or sediment and bi-
nary masks are provided. To visualize the data we assembled a mosaic using the
several small patches from the dataset (see Fig. 4). The goal of the competition
is to segment regions that contain salt. Note that if the 101x101 image contains
all the salt pixels, it is treated as an empty mask in the data. Such peculiarity
is explained by the organizers as they are more interested in segmenting salt
deposit boundaries instead of full-body salt.

The whole dataset has been split into three parts: train, public test, and
private test. The train set consists of 4000 images together with binary masks
and is used for models developing. The public test set has around 6000 images
and is used for evaluating the models during the competition. Lastly, private
test set has around 12000 images and is used to determine the final competition
standings. Overall, the test dataset contains 18000 unlabeled images (public +
private test) which we can use for self-training.

To track the local quality of the models and prevent overfitting we used 5-fold
cross-validation. Thus, every model is trained five times (one per fold).

Evaluation metric The metric used in this competition is defined as the mean
average precision at 10 different intersection over union (IoU) thresholds ¢ =
(0.50,0.55,...,0.95). The IoU of a predicted set of salt pixels and a set of true
salt pixels is calculated as:

ANB

IoU(A,B) = S5 (1)

Let Y be a ground truth set of pixels and Y’ be a set of pixels predicted by a
model. At each threshold ¢, a precision value is calculated based on the following
rules:

0, if|[Y|=0and |Y'|>0
0, if [Y|>0and |Y'|=0

P(t) = vl " (2)
1, if Y]=0and |Y'|=0

ToU(Y,Y") >t, if |[Y|>0and |Y'| >0
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Then, the average precision of a single image is calculated as the mean of the
above precision values at each IoU threshold:
1 Jo
AP = - Z P(t;). (3)
=1
The final evaluation score (mAP) is calculated as the mean taken over the indi-
vidual average precisions of each image in the test dataset.

4.2 Implementation details

We employ an ensemble of two U-Nets with Imagenet-pretrained encoder back-
bones: U-ResNet34 and U-ResNeXt50. The output of the ensemble is the average
of the predictions of two models in the ensemble.

All images are resized to the size of 202 x 202 pixels and then padded to the
size of 256 x 256 pixels. We do K = 3 rounds of self-training and 7" = 200 training
epochs per round. Increasing the number of rounds did not lead to significant
improvements of the results. We use cosine annealing learning rate policy [33]
resetting the learning rate every 50 epochs (cf. loss spikes in Fig. 1 every 50
epochs). The learning rate starts from 0.001 and decays to 0.0001 every cycle.

Model weights are ”warmed-up” using binary cross-entropy loss during the
first 50 epochs. After that, we minimize Lovasz loss function [4] for 150 epochs,
which allows a direct optimization of the IoU metric. The warm-up phase is
necessary because we noticed that the network gets stuck in a very bad local
optimum when the Lovasz loss is used from the very beginning.

Additionally, to get a more robust ensemble at the end of every round we av-
erage the predictions of 4 snapshots, which are saved every 50 epochs. When pre-
dicting pseudo-labels for all unlabeled data we do not remove the low-confidence
predictions (i.e. thresh = —inf) and use all 18000 pseudo-labeled images for
training in the next round. We noticed that this strategy yielded better results
than using only confident pseudo-labels.

During the first self-training round, we train the ensemble on the provided
4000 labeled images and generate 18000 pseudo-labels for unlabeled images.
At rounds 2 and 3 we train the network for T' epochs solely on the pseudo-
labeled data and then fine-tune for another 7" epochs on the ground truth labeled
training images. During initial experiments, we observed that jointly training
on the ground-truth labeled images and pseudo-labeled images led to inferior
results.

After each stage, we obtain 4 network snapshots for each of 5 folds giving 20
snapshots in total for a single network architecture. Since we use an ensemble
of U-ResNet34 and U-ResNeXt50, it results in 40 models in total which are
combined together for inference using the average voting.

For the final prediction on the test set, we use an ensemble of Round 2 and
Round 3 models, which gives the best performing results on the public and
private test sets (see Tab. 1).

To ensure the reproducibility, we will release the source code for our approach
after the acceptance of the paper.
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4.3 Results

We now compare our approach to the other state-of-the-art approaches. The
detailed results are presented in Tab. 1. We evaluate using 3 metrics: private
test mAP; public test mAP; place the model achieves on the private leaderboard
(LB).

The table is split into three sections. The first section shows the results of
the single U-ResNet34 model without the usage of pseudo-labels (i.e. Round 1
only). The second section (”Our U-ResNet34”) shows results for 3 rounds of self-
training using our U-ResNet34 model only (no ensemble used). And the third
section (”Our U-ResNet34 + U-ResNeXt50”) shows the results for 3 rounds of
self-training using the ensemble of U-ResNet34 and U-ResNeXt50.

Training U-ResNet34 for 200 epochs gives 0.8834 mAP on private test. If we
continue training the same model for another 200 epochs, it gives only a minor
improvement by 0.1%.

However, the proposed self-training procedure allows to further improve the
score using the unlabeled data while regular training does not help anymore.
Round 2 of self-training significantly improves the performance: private test mAP
score is increased by 0.6% bringing the model 41 positions up the leaderboard.
Round 3 further improves the mAP score on the private test by 0.2% and moves
us to the 12-th position on the leaderboard. This time the improvement is not so
large as after Round 2, nevertheless it shows that applying multiple self-training
rounds allows the model to iteratively increase the quality. Finally, a simple
average of Round 2 and Round 3 models gives an extra 0.1% performance boost
and brings us to the 10 place on the leaderboard (see ”Ensemble of Round 2
and Round 3” in the second section of Tab. 1). Fig. 1 shows the validation loss
and mAP during different rounds of self-training. We observe that the model
achieves better validation score every consequent round of self-training.

Our ensemble of U-ResNet34 and U-ResNeXt50 achieves the top-1 score on
the private and public leaderboards showing the state-of-the-art performance on
this dataset after two rounds of self-training. It has mAP score 0.8964 on the
private LB (see ”"Ensemble of Round 2 and Round 3” in the third section of
Tab. 1). For comparison, this ensemble surpasses the approach from the 27-th
position described in [23] by 0.9%.

4.4 Ablation study

In this section, we investigate improvements that can be gained using only one
model architecture. The results of the ablations studies are reported in the first
section of the Tab. 1.

We start with a single best snapshot of U-ResNet34 model which yields 0.8682
private test mAP (200-th place on the private leaderboard). The first idea is to
use Test Time Augmentations (TTA): instead of predicting on a single test
image, we average predictions on the original test image and its horizontal flip.
Such an approach gives 0.6% performance boost almost for free.
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The next idea is to utilize multiple snapshots. As was shown in the previous
section, the cosine annealing learning rate schedule allows us to obtain multiple
local optima in a single training loop. We can create an ensemble of all the
snapshots instead of using only the latest snapshot. Such a method gives another
0.4% performance improvement.

Finally, we can further increase the diversity of the models training them
on different data subsets. The most obvious choice, in this case, is to use k-fold
data split and train k different models. This simple idea gives another substantial
improvement of 0.6% mAP score relative to the previous one. It corresponds to
the 40 positions increase on the private leaderboard.

5 Conclusion

We introduced an iterative self-training approach for semantic segmentation
which can be effectively used in the limited labeled data setup by using un-
labeled data to boost the model performance. Moreover, we designed a sophis-
ticated network architecture for the task of salt body delineation and evaluated
the proposed approach on a real-world salt body delineation dataset — TGS Salt
Identification Challenge [22]. Our approach shows the best performance in the
TGS Salt Identification Challenge [22] reaching the top-1 position on the leader-
board among the 3234 competing teams, which proves its effectiveness for the
task.
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