Skip to main content

Generative Aging of Brain MR-Images and Prediction of Alzheimer Progression

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11824))

Included in the following conference series:

Abstract

Predicting the age progression of individual brain images from longitudinal data has been a challenging problem, while its solution is considered key to improve dementia prognosis. Often, approaches are limited to group-level predictions, lack the ability to extrapolate, can not scale to many samples, or do not operate directly on image inputs. We address these issues with the first approach to artificial aging of brain images based on Wasserstein Generative Adversarial Networks. We develop a novel recursive generator model for brain image time series, and train it on large-scale longitudinal data sets (ADNI/AIBL). In addition to thorough analysis of results on healthy and demented subjects, we demonstrate the predictive value of our brain aging model in the context of conversion prognosis from mild cognitive impairment to Alzheimer’s disease. Conversion prognosis for a baseline image is achieved in two steps. First, we estimate the future brain image with the Generative Adversarial Network. This follow-up image is passed to a CNN classifier, pre-trained to discriminate between mild cognitive impairment and Alzheimer’s disease. It estimates the Alzheimer probability for the follow-up image, which represents an effective measure for future disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberdi, A., et al.: On the early diagnosis of Alzheimer’s Disease from multimodal signals: a survey. Artif. Intell. Med. 71, 1–29 (2016)

    Article  Google Scholar 

  2. Antipov, G., Baccouche, M., Dugelay, J.L.: Face aging with conditional generative adversarial networks. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2089–2093 (2017)

    Google Scholar 

  3. Giorgio, A., et al.: Age-related changes in grey and white matter structure throughout adulthood. In: NeuroImage (2010)

    Google Scholar 

  4. Cheng, B., et al.: Domain transfer learning for MCI conversion prediction. IEEE Trans. Biomed. Eng. 62, 1805–1817 (2012)

    Article  Google Scholar 

  5. Bône, A., et al.: Prediction of the progression of subcortical brain structures in Alzheimer’s disease from baseline. In: GRAIL/MFCA/MICGen@MICCAI (2017)

    Google Scholar 

  6. Cabral, C., et al.: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages. Comput. Biol. Med. 58, 101–109 (2015)

    Article  Google Scholar 

  7. Baumgartner, C.F., et al.: Visual feature attribution using wasserstein GANs. In: CVPR (2018)

    Google Scholar 

  8. Bowles, C., et al.: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks. In: Medical Imaging: Image Processing (2018)

    Google Scholar 

  9. Jack, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging JMRI 27, 685–691 (2008)

    Article  Google Scholar 

  10. Ding, Z., Fleishman, G., Yang, X., Thompson, P., Kwitt, R., Niethammer, M.: Fast predictive simple geodesic regression. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_31

    Chapter  Google Scholar 

  11. Lu, D., et al.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. In: Scientific Reports (2018)

    Google Scholar 

  12. Moradi, E., et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)

    Article  Google Scholar 

  13. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  14. Korolev, I.O., et al.: Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. In: PloS One (2016)

    Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

    Google Scholar 

  16. Dukart, J., et al.: Generative FDG-PET and MRI model of aging and disease progression in Alzheimer’s disease. PLoS Comput. Biol. 9(4), e1002987 (2013)

    Article  Google Scholar 

  17. Ellis, K.A., et al.: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychoger. 21, 672–687 (2009)

    Article  Google Scholar 

  18. Lin, W., et al.: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front. Neurosci. (2018)

    Google Scholar 

  19. Liu, S., Sun, Y., Zhu, D., Bao, R., Wang, W., Shu, X., Yan, S.: Face aging with contextual generative adversarial nets. In: ACM Multimedia (2017)

    Google Scholar 

  20. Arjovsky, M., et al.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 214–223 (2017)

    Google Scholar 

  21. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer’s Dement. 1, 55–66 (2005)

    Article  Google Scholar 

  22. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_80

    Chapter  Google Scholar 

  23. Palsson, S.: Generative adversarial style transfer networks for face aging. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2165–21658 (2018)

    Google Scholar 

  24. Pathan, S., Hong, Y.: Predictive image regression for longitudinal studies with missing data. In: Medical Imaging with Deep Learning (MIDL) (2018)

    Google Scholar 

  25. Peters, R.: Ageing and the brain. Postgrad. Med. J. 82(964), 84–88 (2006)

    Article  Google Scholar 

  26. Querbes, O., et al.: Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain J. Neurol. 132, 2036–2047 (2009)

    Article  Google Scholar 

  27. Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci. Official J. Soc. Neurosci. 23(8), 3295–3301 (2003)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Bildverarbeitung für die Medizin (2017)

    Google Scholar 

  29. Wegmayr, V., Hörold, M., Buhmann, J.M.: Generative aging of brain MRI for early prediction of MCI-AD conversion. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (2019)

    Google Scholar 

  30. Wolz, R., et al.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. In: PloS One (2011)

    Google Scholar 

  31. Huizinga, W., et al.: A spatio-temporal reference model of the aging brain. NeuroImage 169, 11–22 (2018)

    Article  Google Scholar 

  32. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 31–39 (2018)

    Google Scholar 

  33. Sun, Z., et al.: Detection of conversion from mild cognitive impairment to Alzheimer’s disease using longitudinal brain MRI. Front. Neuroinform. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Wegmayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wegmayr, V., Hörold, M., Buhmann, J.M. (2019). Generative Aging of Brain MR-Images and Prediction of Alzheimer Progression. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics