The Circuit Breaker Pattern targeted to Future
IoT Applications

1[0000—0001—6950—8169] 1[0000—0002—7088—4492]
9)

Gibeon Aquino Rafael Queiroz
Geoff Merrett2[0000-0003—4980-3894] " 541 q Bashir Al-Hashimi?

! Department of Informatics and Applied Mathematics, UFRN, Brazil
gibeon@dimap.ufrn.br,rafaelqueiroz@ufrn.edu.br
2 School of Electronics and Computer Science, University of Southampton, UK
{gvm,bmah}@ecs.soton.ac.uk

Abstract. In the context of the Internet of Things (IoT), there is a
growing trend towards increasing the integration and collaboration be-
tween IoT systems to create relevant end-to-end solutions. Accordingly,
addressing dependability in the future IoT applications will surely be
more challenging. In this work, we examine a popular microservices pat-
tern known as Circuit Breaker (CB). This pattern aims at preventing
failure from cascading to dependent services. In the context of IoT, it can
be used as an intermediary in the communication between critical IoT
nodes to increase the dependability of the whole. Notwithstanding, some
particularities present in IoT must be considered to allow this pattern to
yield similar benefits. Therefore, we compile several aspects concerning
the design and implementation of the CB tailored to IoT applications
as a taxonomy. Also, we conduct an experimental validation to compare
the benefits of the CB in a prototype of a traffic light system.

Keywords: Circuit Breaker - Internet of Things - Microservices Archi-
tecture - Dependability - Software Architecture

1 Introduction

There is a growing trend towards increasing the integration and collaboration
between IoT systems to create relevant end-to-end solutions [2]. Under the col-
laborative perspective, they form a cluster of systems cooperating to solve harder
problems. This phenomenon is known as System of Systems (SoS) [1], and it is
well applicable to a significant part of existing IoT systems [4]. Indeed, this kind
of IoT solutions has been advancing very fast and, shortly, they might repre-
sent most of the IoT deployments. The concern is that designing, implementing,
and operating IoT applications acting as SoSs is even more complex and intro-
duces new challenges. Therefore, advanced development strategies are required
to address dependability in these applications adequately [6].

Meanwhile, Microservices Architecture (MSA) has been increasingly lauded
as a successful approach to achieving dependability in information systems.
There is also a growing position in favor of applying MSA to in IoT [3, 7]. Accord-
ingly, IoT applications could adopt several of the MSA development strategies

2 G. Aquino et al.

to reap similar benefits. Among the MSA strategies, the Circuit Breaker (CB)
is a prevalent pattern to deal with the resilience of distributed services. It works
by preventing the failure propagation to dependent services. For IoT systems, it
can be used as an intermediary in the communication between critical IoT nodes
in order to increase the dependability of the whole solution.

This work seeks to explore the options of designing and implementing the CB
in IoT solutions. Although many IoT devices have high computing capabilities
(e.g., smartphones, home voice assistants), a significant part has limited capabili-
ties (e.g., memory, processing power, energy availability, connectivity), dedicated
systems, and non-preemptive execution [8,5]. Therefore, the CB in IoT appli-
cations must address these constraints properly. For this reason, we investigate
several CB possibilities target to IoT and organize them as a taxonomy. More-
over, to examine the applicability and trade-offs, we conduct an experimental
study using a prototyped IoT application. This prototype simulates a solution
of smart traffic lights based on the collaboration of multiple nodes.

2 Circuit Breaker Narrowed to IoT Systems

The CB is a simple and effective pattern for fault tolerance. In the interaction
between different microservices, it assumes the responsibility of detecting failures
and preventing its propagation. The use of CB brings several benefits directly
related to availability and reliability, such as: (a) It prevents to perform the action
that is doomed to fail; (b) It allows handling the error quickly and gracefully;
(c) The callers do not have to cope with the failure themselves; (d) Custom
fallback plans can be used; (e) All callers are spared from calling the crashed
service; (f) It can also spare the service from being overwhelmed by large numbers
of requests (e.g., it can implement a local cache).

Circuit Breaker

Checking
Interval

Error Threshold

Structural Behavioural

S TTST-SoT-°T-oCCCoToTToTo Tt Tmm o o - - - y---------------------oeTm" LAt \l
T T '
! [| ¥ 1 :

| — 1 |
! |Deplnyment| | Instance | | Wrapping | : 1 | Fallback | |Conﬁguralion| : i |Cummunicatiun| :
!] 1
i Caller | Single | In-Process |' i ¥ Request- | |
| gl N Masking Timeout o Resrorsall| |

[1 !

Vi ' '
] Proxy | Multiple | Intar-Prucasal: ! Fail-Fast | Connurrencyl 1 i I

1 I
I
| ¥ !
! ! '
1 '
e I
1 '
" i

.

Fig. 1. A Taxonomy for the Design of the Circuit Breaker Targeted to IoT applications.

Although the CB is a simple pattern, there are several issues to take into
account when implementing it. For the best of our knowledge, the literature
about it is usually focused on information systems and fail to address specific
needs required by IoT. For this reason, we sought to compile the main aspects,
and possibilities regarding the CB tailored to IoT and organized them as a
taxonomy (Fig. 1). It defines three main groups, according to their influence on

The Circuit Breaker Pattern targeted to Future loT Applications 3

the CB design. The Structural comprises the options which affect the structure in
terms of implementation and execution. The Behavioural includes those related
to the behavior at run-time. The last is related to communication.

2.1 Structural

A critical decision to be made in IoT scenarios is the deployment location where
the CB will execute, i.e., in which physical node it will be hosted. Because every
message must pass through it, its availability, security, and performance have to
fit the application needs. In IoT applications, these aspects include the reliability
and the capacity of the hardware, the deployment location, the energy supply,
the connectivity, and also the other process/services competing in the same node.
In essence, it can execute in the caller, service, or as an additional node.

The management of CB instances is another critical decision. Simple solu-
tions can adopt a single instance option running in the caller, service, or proxy.
However, in some applications, redundancy strategies involving the use of multi-
ple instances should be considered also to improve its availability. Also, the way
how the instances interact with the caller or the service (wrapping) may also be
taken into consideration. It can share the same process (In-process), or it can
run in a separate process (Inter-process).

2.2 Behavioural

Several options exist, but they can be grouped in the following categories: Mask-
ing, Fail-fast, and Retry. While the masking strategy seeks to hide the failure to
the caller, the fail-fast allows to notice it as fast as possible. The most common
masking strategies are: return a default value; return the last valid result (e.g.,
from a cache); or return a calculated value (e.g., forecasting based on histori-
cal data). Among the fail-fast strategies, the most common are: return an error
code; return the original error to the caller. Finally, the Retry strategy seeks to
try the failed operation again some times, hoping it can be successful. It can also
retry in a surrogate service.

A fundamental ability of the CB is the failure detection on the target service
in order to trip the circuit. In the same way, when the circuit is open, it must
monitor the service health to close the circuit safely. The main strategies to do
this are: (a) On-demand — it periodically transits to the state of half-open and
seize a real request to test the service; (b) Passive — it waits for periodic health
signals from the service (e.g., heartbeats, keepalives) to confirm if the service
is available or unavailable; (c¢) Active — it regularly checks the service health
independently of the caller requests.

Finally, several parameters should be adjusted appropriately, considering the
application needs, to attain the CB benefits. One of them is the timeout, which
is used to establish a limit of how long the CB should wait before assuming
an omission failure. The concurrency configuration includes parameters such
as the maximum of concurrent requests, requests queue size, and maximum
throughput. The checking interval establishes the frequency of health checking.
To differ intermittent and permanent failures, the CB uses the error threshold
which indicates the limit of failures it can tolerate.

4 G. Aquino et al.

2.3 Communication

IoT solutions are strongly based on communication between things. Currently,
a vast number of communication protocols and technologies coexist. As an in-
termediary, the CB must follow the same communication model adopted by the
peers. Despite the several options, we can abstractly classify them in four models.

The Request-response is the model which the caller sends requests, and the
service responds. This model is usually synchronous, as the caller has to wait for
the response to continue its task. It is also stateless as no information about the
caller is kept between requests. Even in IoT systems, RESTful HTTP solutions
are commonly found [3]. However, for constrained devices and networks, other
REST derivatives options are frequently mentioned, e.g., the Devices Profile for
Web Services (DPWS) and the Constrained Application Protocol (CoAP).

The Asynchronous messaging allows the systems to send messages to each
other asynchronously. Commons examples of this model in IoT are WebSocket
protocol and Reactive Streams. One variation of that model is the Publish-
Subscribe. In this model, the sender of a message (publisher) does not send
it directly to the receiver (subscriber). Alternatively, they use an intermediate
(i.e., message broker) to asynchronously delivered the messages. One of the most
common examples of this model in IoT solutions is the MQTT (Message Queuing
Telemetry Transport). Finally, Exclusive-Pair is a simple model and considered
a low-level option. It is a bidirectional and fully duplex communication model
which uses a persistent connection between a pair of elements.

3 Experimental Study

To demonstrate the suitability of the CB to address the dependability, we de-
veloped a prototype® that simulates a collaborative traffic light system. It is
composed of several micro-controllers, each one placed in a traffic junction to
control a traffic light group. Each runs an instance of a Traffic Junction System
(TJS) and are wirelessly interconnected. The TJS performs a periodic task of
monitoring the traffic density on the roads its controls and also requests data
from adjacent TJSs to make a more accurate decision. In this study, we sought
to evaluate the consequences of intermittent nodes for the whole solution.

This scenario aims to demonstrate the SoS paradigm applied to IoT. A crit-
ical issue in such systems is that failures in one part can induce the dependent
systems to fail too, potentially triggering the cascading effect. In order to ex-
amine this issue, we ran five TJS instances (TJ0...TJ4) and simulated omission
failures in two of them according to the following configuration (node, start,
duration): {(TJ1, 30s, 30s), (TJ1, 90s, 10s), (TJ3, 40s, 20s)}. This kind of
failure happens when the service omits to respond to a request. The duration
of the experiment was 120s, with task periods of 2s. For the physical nodes, we
used Raspberry Pi 3 Model B, interconnected in a network of 100 Mbps. Con-
cerning the CB design structural decisions, we adopted the following strategies:

3 https://github.com/labcomu/smart-traffic-prototype

The Circuit Breaker Pattern targeted to Future loT Applications 5

2500
—8—No CB

With 8

2000
1500

1000

T 1 -
—) E—

K2

0 Sy gy g Ny g, Y, Yy T, Yoy 0 S, %y Sy, My Yo, %, %y g, s, g U 2
% %oy 00y %0y 00y 0o 00y "0 005 %0y 009 "%ny "0 0o "0y "%0p 00y "0y 005 0g, %05, Y005, "S5, 0,

Fig. 2. Task time over the experiment execution.

caller deployment, single instance, and in-process wrapping. Such choices aimed
to create a configuration suitable to the typical constraint of traffic junction
infrastructures. Concerning the behavior, we implemented the fail-fast strategy,
on-demand health checking, and configuration parameters of {timeout=1s, error
threshold=1, no concurrency}. These choices sought to achieve more accurately
the requirements of the TJS.

3.1 Experimental results

In our study, we extended the traditional availability measurement by introduc-
ing the metric availability to collaborate (AC). It is defined as the fraction of
time the TJS is active responding requests from its peers. As the solution’s key
point is the collaboration ability, the time it is available to provide information
to the adjacent nodes is a relevant quality attribute. Table 1 shows that the AC
increased with the use of the CB. It means the solution with CB allowed the TJS
to dedicate more time collaborating with its peers and consequently improving
the accuracy of its decision.

Table 1. Results of the experiment execution collected on the TJ0 node.

No CB With CB No CB With CB
Executed Tasks 60 60 Task time (mean) 929 ms 600 ms
Complete Tasks 41 41 Task time (std) 737 ms 329 ms
Partial Tasks 10 19 Availability to
Aborted Tasks 9 0 collaborate 53.6% T0.0%

This effect is influenced by the decrease of the Task time, which is the time
to the TJS completes one task. Accordingly, the use of the CB improved the
performance and also the stability. Without the CB, the task time becomes very
high during the failures (Fig. 2). Because the TJS needs to wait for the adjacent
nodes response to complete its task, its performance is strongly affected if some
of the peers last to respond.

6 G. Aquino et al.

Finally, we also evaluated the completion of the tasks (Table 1). The tasks
were classified as follows: Complete — executed considering all peers response
and completed before the task cycle expires; Partial — completed before the task
cycle expires, but could not use information from all peers; Aborted — did not
complete before the task cycle expires. The results showed a complete reduction
in the aborted tasks with the CB. It means the TJS was able to make more
accurate decisions.

4 Conclusions

This paper sought to examine the circuit breaker pattern in the context of IoT.
We seized the growing belief that some MSA practices are promising to IoT, par-
ticularly considering the expected complexity of future applications. Our main
contribution was the definition of a taxonomy, based on the compilation of sev-
eral aspects concerning the design and implementation of the CB tailored to IoT
applications. Also, we conducted an experimental validation to compare the ben-
efits of this pattern in a prototype of a traffic light system. The results showed
several advantages for this specific application. In particular, it demonstrated
the CB ability to improve performance, availability, and accuracy significantly.

Acknowledgements

This research was partially funded by CAPES - Finance Code 001, INES 2.0,
CNPq grant 465614/2014-0, FACEPE grant APQ-0399-1.03/17, and CAPES
grant 88887.136410/2017-00.

References

1. Ackoff, R.L.: Towards a system of systems concepts. Management science 17(11),
661-671 (1971)

2. Bello, O., Zeadally, S.: Intelligent device-to-device communication in the internet of
things. IEEE Systems Journal 10(3), 1172-1182 (2016)

3. Butzin, B., Golatowski, F., Timmermann, D.: Microservices approach for the in-
ternet of things. In: 21st International Conference on Emerging Technologies and
Factory Automation (ETFA). pp. 1-6. IEEE (2016)

4. Delicato, F.C., Pires, P.F., Batista, T., Cavalcante, E., Costa, B., Barros, T.: To-
wards an iot ecosystem. In: Proceedings of the First International Workshop on
Software Engineering for Systems-of-Systems. pp. 25-28. ACM (2013)

5. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the internet of things: a survey. IEEE Internet of Things Journal 3(5),
720-734 (2016)

6. Hammoudi, S., Aliouat, Z., Harous, S.: Challenges and research directions for inter-
net of things. Telecommunication Systems 67(2), 367-385 (2018)

7. Santana, C., Alencar, B., Prazeres, C.: Microservices: A mapping study for inter-
net of things solutions. In: 2018 IEEE 17th International Symposium on Network
Computing and Applications (NCA). pp. 1-4. IEEE (2018)

8. Zikria, Y.B., Yu, H., Afzal, M.K., Rehmani, M.H., Hahm, O.: Internet of things (iot):
Operating system, applications and protocols design, and validation techniques.
Future Generation Computer Systems 88, 699 — 706 (2018)

