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Abstract. The back-ends of mobile apps usually use services executed on remote
(e.g., cloud) machines. The transmission latency may though make the usage of
remote machines a less efficient solution for data that need short analysis time.
Thus, apps should further use machines located near the network edge, i.e., on the
Fog. However, the combination of the Fog and the Cloud introduces the research
question of when and how the right binding of the front-end to an edge instance
or a remote instance of the back-end can be decided. Such a decision should not
be made at the development or the deployment time of apps, because the response
time of the instances may not be known ahead of time or cannot be guaranteed.
To make such decisions at run-time, we contribute the conceptual model and
the algorithmic mechanisms of an autonomic wrapper of edge/remote instances.
The wrapper predicts the response time of instances and dynamically decides the
binding of the front-end to an instance. The evaluation results of our approach
on a real-world app for a large number of datasets show that the wrapper makes
efficient binding-decisions in the majority of the datasets, decreasing significantly
the response time of the app.

Keywords: Fog · mobile back-end · autonomic control-loop · predictive model.

1 Introduction

Amelia is an avid eBay user, always ready to snap up a bargain. And generally enjoys
the thrill of a bidding fight right up to the final moments. She wants to buy a nearly
new Xbox but she finds it difficult to decide on the best bidding price. Thus, she down-
loaded on her phone an auction app that predicts bidding prices [1]. However, Amelia
complains she lost some final-moment bidding fights due to delays in the app response.

What Amelia does not know is that data collected on her phone are moved to the
Cloud and the output of the analysis is sent back to her. While the Cloud offers power-
ful machines for efficient data-analytics, the latency of the transmission may make the
usage of the Cloud a less efficient solution for data that need short analysis time [2].
To make apps more efficient, service instances (i.e., replicas) of a back-end should be
further deployed on the Fog. The Fog constitutes machines located near the network
edge (e.g., laptops, small-scale data-centers) [3]. The combination of the Fog and the



2 D. Athanasopoulos et al.

Cloud though introduces the research question of when and how the right binding of
the front-end of an app to an edge or a remote instance can be decided3.

Concerning the first part of the question, bindings should not be decided at the de-
velopment or the deployment time of apps (as the state-of-the-art does), because the
response time of instances may not be known ahead of time or cannot be guaranteed.
Thus, we face the challenge of deciding the binding of the front-end at run-time. Re-
garding the second part of the question, we consider that the response time of an in-
stance depends on the execution time of the instance on a machine and on the network
latency to reach out the machine4. Thus, we face the challenge to predict the response
time of instances based on the input datasets and the machines used for deploying the
instances. On top of that, the efficiency challenge of predicting response times from a
large number of datasets is raised, since the number of the datasets increases over time.

To address the above challenges, we contribute the conceptual model and the al-
gorithmic mechanisms of an autonomic wrapper of the edge and the remote service-
instances of a back-end (one wrapper for each back-end). The wrapper is offered as
a service, is deployed on the Fog, and acts as a proxy between the front-end and the
back-end instances5. Each time the front-end interacts with the wrapper, the latter dy-
namically predicts the response time of the instances and decides the binding of the
front-end to an instance. To do it in an autonomic manner, the wrapper follows the au-
tonomic control-loop of self-adaptive software [4]. Specifically, the wrapper monitors
the past invocations to the instances, analyses a few representative input datasets (for
addressing the efficiency challenge) to (re-)build predictive models of the response time
of the instances, and dynamically decides the binding of the front-end to an instance.

To evaluate our approach, we implement a research prototype of the autonomic
wrapper of the auction app (Fig. 1). A large number of datasets, collected from the UC
Irvine machine-learning repository [5], is given as input to the app. The experimental
results show that the wrapper makes efficient binding-decisions in the majority of the
datasets, decreasing significantly the response time of the app.

The rest of the paper is structured as follows. Section 2 describes the related ap-
proaches and compares them against ours. Sections 3 and 4 specify the conceptual
model and the algorithmic mechanisms of autonomic wrapper. Section 5 presents the
evaluation of our approach. Section 6 discusses the threats to the validity of our work.
Section 7 summarizes our contribution and discusses future directions of our research.

2 Related Work

The approaches that use both the Fog and the Cloud for the execution of mobile apps
have typically focused on the development or the deployment time of apps. These ap-
proaches aim at meeting the non-functional requirements of apps and/or machines.

3 The front-end of an app includes the graphical user-interface of the app and the programming
client that interacts with (feeding with data) the service back-end.

4 The datasets that are locally stored by the instances are synchronized to the storage of the
cloud instance. We do not consider the synchronization time in the current work.

5 At least an edge and a remote instance have been pre-deployed. Their endpoints are registered
to the wrapper during its deployment. The decision of the number of instances is future work.
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Fig. 1. Auction app extended with the autonomic wrapper and edge/remote back-end instances.

Concerning the non-automated approaches, [6] provides suggestions for deploy-
ing the back-ends of an app to machines. The suggestions mainly aim at reducing the
network latency, the energy consumed by apps and the financial cost of renting ma-
chines. [7] proposes a methodology for assessing the security level of deployment plans.

Regarding the automated approaches, [8], [9] and [10] generate deployment plans
that minimize the network latency, the delay of machines to serve apps and the renting
cost, respectively. [11,12] generate deployment plans that minimize the network usage.
[13, 14] generate deployment plans for a set of apps to reduce the power consumption.
[15] produces deployment plans based on the renting cost and the end-users’ budgets.
[16] selects machines at deployment time based on their ranking with respect to the
delay of machines and the power consumption. [17] regenerates deployment plans via
modeling the delay of machines as a function of the elapsed discrete-time. Finally, [18]
regenerates deployment plans when the latency of back-ends exceeds a time threshold.

Overall, two approaches monitor the app execution to use the current values of non-
functional properties for regenerating deployment plans [17, 18]. The two approaches
are though reactive because they suspend the app execution to redeploy the apps. The
approaches also lay between apps and operating systems (e.g., deployment engines).
Our approach defines autonomic wrappers that run at the application layer and pro-
actively (without suspending the app execution) decide the binding of the front-end.

3 Conceptual Model of Autonomic Wrapper

The conceptual model of an autonomic wrapper is depicted in Fig. 2. Based on the
model, the autonomic wrapper offers an API (Section 3.1), implements a dynamic
binding-mechanism (Section 3.2) and follows an autonomic control-loop (Section 4).

3.1 API of Autonomic Wrapper

The API offers all of the operations of the back-end of a mobile app. From the Web-
service technology perspective, an API is exposed by using the REST [19] or the SOAP
[20] protocol. We define the notion of the API in a generic manner as follows.
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Fig. 2. The UML diagram of the conceptual model of an autonomic wrapper.

Definition 1. Each operation of the API of an autonomic wrapper corresponds to a
programming method6 of the API of the back-end. Each operation accepts/returns a
(possibly empty) set of input/output parameters.

The schemas of input/output parameters are technically specified in the XML or
the JSON format. Given that XML/JSON schemas can be transformed to programming
objects (e.g., JAXB7), we define the notion of the parameter in a generic manner based
on the object-oriented paradigm as follows.

Definition 2. A parameter p is characterized by a name and a built-in or complex data-
type. A complex data-type is a group of or a reference to another parameter.

Taking the example of the auction app, we assume the back-end uses the k-means
clustering algorithm [22]. The operation of the API accepts the following parameters:
the number of clusters, the number of the algorithm iterations and a dataset. The first and
the second parameters have a built-in data-type (e.g., int), while the third parameter has
the complex data-type of a list of multi-dimensional data-points (i.e., List<Double[]
dataPoint> dataset). In turn, a data-point is a parameter that has a complex data-
type too. The latter is defined by a vector of coordinates, where each coordinate has a
built-in (Double) data-type.

Based on Def. 2, a parameter has a hierarchical structure. However, only the leaves
of the above structure carry actual data values. Returning to our example, while a two-
layer structure is formed, only the second/lowest layer (Double[] dataPoint) con-
tains actual data (a.k.a., the coordinates of data-points). Based on this observation, our
approach pre-processes multi-layer parameters and converts them to a set of unstruc-
tured ones. We define the notion of the unstructured parameter as follows.

Definition 3. The unstructured parameters of a multi-layer parameter p is the set of
the leaf data-types {x} of p. Each unstructured parameter x is defined by a tuple (n, c)

6 While the programming methods are explicitly defined in a SOAP-based API, the methods can
be determined in a RESTful API by parsing the suffix of the URI of the API [21].

7 https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html

https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html
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that consists of the name n and the cardinality c of the corresponding leaf data-type.
The cardinality c equals to product of the cardinalities of the grouping structures that
are met in the path followed to reach n from the root node of p.

The multi-layer parameter, p = List < Double[] dataPoint > dataset, in our
example is converted to a singleton set, {x} = {(dataPoint, c)}, where c is the cardi-
nality of the list structure (the list is the only node that precedes x in the path from the
root)8. Hereafter, we use the term parameter to refer to an unstructured parameter.

3.2 Dynamic Binding-Mechanism of Autonomic Wrapper

The dynamic binding-mechanism comprises the components of the Dynamic Binding,
the Autonomic Control-Loop and the Service Proxy, as depicted in Fig. 2.

The Dynamic Binding implements all of the operations of the API of the back-end.
In particular, the implementation of the operations of the Dynamic Binding handles
calls from the front-end to the operations of the back-end. To handle such calls, the
Dynamic Binding first pre-processes the input data (to form the unstructured parame-
ters), following uses the Autonomic Control-Loop to predict the response time of the
edge/remote instances and then finds the instance that has the lowest predicted-value.
Finally, the Dynamic Binding uses the Service Proxy9 to forward the operation
call to the selected instance. To forward operation calls, the Dynamic Binding instan-
tiates the target parameters of the operation of the selected instance. To instantiate them,
the Dynamic Binding considers that an one-to-one mapping exists between the param-
eters of the called operation of the autonomic wrapper and the parameters of the called
operation of the selected instance. This mapping exists because the edge instance and
the remote instance implement the same API and hence, their operations accept/return
the same parameters with those of the autonomic wrapper.

4 Autonomic Control-Loop

The control loop of the autonomic wrapper extends the generic Monitor-Analyze-Plan-
Execute and Knowledge loop (MAPE-K) of self-adaptive software [4]. The Monitoring
mechanism records the response time of edge/remote service-instances, i.e., the elapsed
time between when the invocation is made and when the response is returned back.
Thus, the response time is the sum of the execution time of an instance on a machine
and of the network latency.

The core tasks of the loop are implemented by the Analysis and the Planning mech-
anisms (Sections 4.1 and 4.2). The Analysis mechanism (re-)constructs predictive mod-
els of response times that are expressed as a function of the values of the input parame-
ters. A different predictive-model is constructed for each edge/remote instance because
instances are usually deployed on different machines.

8 If the cardinality is not declared in parameter schemas, then our approach considers a large
pre-defined value as an artificial cardinality.

9 The relationship between the Dynamic Binding and the Service Proxy is UML compo-
sition (depicted by filled diamond) so as to hide the edge/remote instances from the front-end.
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The Planning mechanism dynamically (re-)creates groups of parameter values and
stores a representative value for each group, along with the corresponding monitoring
response-times10. In this way, the mechanism does not store a high number of parameter
values. The mechanism uses the constructed models and the stored parameter-values to
predict response times and select the instance that has the lowest predicted-value.

4.1 Analysis Mechanism

We firstly define the notions of the predictive model and the prediction error.

Predictive Model and Prediction Error Since the mechanism constructs a different
predictive-model for each service instance of an API, we define the above notions for
each (edge or remote) service instance and especially, for each operation of an instance.

Definition 4 (Predictive model of an operation). The predictive model, pop, of an

operation, op, of a service instance, si, is defined by the tuple:
(
x[D,N ], ŷ[D], y(x)

)
– x[D,N ]: D past values of each one of the N input parameters of op
– ŷ[D]: D monitoring response-times of op
– y(x): a polynomial function of x that predicts the response time of op.

Definition 5 (Prediction error for an operation). The prediction error, e, for the re-
sponse time of an operation op, of a service instance si for the current values, x[N ],
of the input parameters of op, equals to the relative distance of the predicted (for x)
response-time, y, from the monitoring response-time, ŷ, of op: e = |y(x)−ŷ|

ŷ

Analysis Algorithm Considering that polynomials describe the performance of pro-
grams well [23], the algorithm builds polynomial functions to predict response times.
One of the most widely used techniques to build polynomials is the regression technique
that applies the Taylor’s term-expansion [24]. However, it takes all of the possible vari-
able combinations and consequently, forms long expressions with unneeded terms. To
build compact expressions, greedy techniques have been proposed [24, 25]. We extend
the sparse-term technique of [25] that examines a small number of terms. Our tech-
nique further selects the term that is dominant (i.e., it has the lowest prediction-error)
and confident (i.e., its prediction error is higher than a threshold).

The algorithm steps are specified in Alg. 1. Alg. 1 accepts as input the current
values of the input parameters, the past and the current monitoring response-times and
the polynomial function of the predictive model of an operation of a service instance.
The inputs of Alg. 1 further include a threshold ω of the lowest prediction-error. Alg. 1
initially calculates the prediction error (Alg. 1 (1-4)). If the error is higher than ω, Alg.
1 rebuilds the predictive model via fitting all of the possible single-variable terms to
the past and the current response-times (Alg. 1 (8)). To fit a term to the response times,
Alg. 1 applies the linear least-square regression-technique [24] (Alg. 1 (5-10)). Finally,
Alg. 1 selects the term that is dominant and confident (Alg. 1 (11-20)). This term is the
polynomial function of the updated predictive-model and is returned back.
10 The constructed predictive-models, the groups of parameter values, and the monitoring

response-times are stored as the Knowledge of the loop.
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Algorithm 1 Analysis Mechanism
Input: x[D,N ], ŷ[D], y(x), ω
Output: y(x)

1: e← |y(x[D,N])−ŷ[D]|
ŷ[D]

;

2: if e > ω then
3: T ← FIT(x, ŷ);
4: y(x)← SELECT(T, x, ŷ);

5: function FIT( x[D,N ], ŷ[D] ): T

6: for all 1 ≤ j ≤ N do
7: y(x)← a ∗ xb

8: FIND a, b :
D∑

i=1
(y(x[i, j])− ŷ[i])2 is minimized

9: T.ADD(y(x));

10: end function

11: function SELECT( T , x[D,N ], ŷ[D] ): y(x)

12: for all y(x) ∈ T do
13: for all 1 ≤ i ≤ D do
14: e += |y(x[i,N])−ŷ[i]|

ŷ[i]
;

15: e← e
|D| ;

16: if e < min and e ≥ ω then
17: min← e;
18: miny ← y(x);

19: y(x)← miny ;
20: end function

4.2 Planning Mechanism

We firstly define the notion of the partition that is used by algorithm.

Partitions of the Domain Values of Parameter The Planning mechanism partitions
the domain of the values of each parameter and stores a representative value for each
partition. A partition is defined as an one-dimension interval. Overall, the partitions of
a parameter are a set of intervals with consecutive integer-endpoints, as defined below.

Definition 6 (Partitions). Let xmin and xmax be the min and the max domain values
of a parameter, x. The set, r, of the Q partitions of the domain values of x is defined
below:

r =
{
r1, . . . , rj , . . . , rQ

}
, where

r1 =
[
xmin, xmin + len(x)

]
rj =

[
xmin + len(x) * (j − 1) + 1, xmin + len(x) * j

]
, j ∈ [2, Q− 1]

rQ =
[
xmin + len(x) * (Q− 1), xmax

]
The partition length that is used in Def. 6 is defined as follows.
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Algorithm 2 Planning Mechanism
Input: x[N ], r[N ], v[N ], {si}, {y(x)}
Output: si

1: PARTITION( r, v, x );
2: si← SELECT({si}, x, {y(x)});

3: procedure PARTITION( r[N ], v[N ], x[N ] )

4: for all 1 ≤ i ≤ N do
5: adjustment← false;
6: if x[i] > xmax[i] then
7: xmax[i]← x[i];
8: adjustment← true;
9: else if x[i] < xmin[i] then

10: xmin[i]← x[i];
11: adjustment← true;

12: if adjustment = true then

13: l← xmax[i]−xmin[i]

Q ;

14: r1[i]←
[
xmin[i], xmin[i] + l

]
;

15: v1[i]← UPDATE(v1[i], r1[i]);
16: for all 2 ≤ j ≤ Q do

17: rj [i]←
[
xmin[i] + l * (j − 1) + 1, xmin[i] +l * j

]
;

18: vj [i]← UPDATE(vj [i], rj [i]);

19: rQ[i]←
[
xmin[i] + l * Q, xmax[i]

]
;

20: vQ[i]← UPDATE(vQ[i], rQ[i]);

21: for all 1 ≤ j ≤ Q do
22: if xj [i].c ∈ rj [i] then
23: if |vj [i]| = 0 then
24: vj [i]← ADD(vj [i], xj [i].c);

25: end procedure

Definition 7 (Partition length). Let xmin and xmax be the min and the max domain
values of a parameter, x, and Q be a number of partitions. The partition length is
calculated by dividing the range of values of x in Q equally-sized intervals: len(x) =
dxmax−xmin

Q e

The representative values of a parameter that are stored in the partitions (one value
in each partition) are defined as follows.

Definition 8 (Representative values of partitions). Let r be the set of the partitions
of the domain values of a parameter x. The Q representative values of the Q partitions
are defined by the set, v =

{
x1.c, . . . , xj .c, . . . , xQ.c

}
, where xj .c ∈ rj .

However, the parameter values are not available beforehand. Thus, the Planning
mechanism dynamically (re-)defines the partitions whenever a new parameter-value ar-
rives and this value is not represented by an existing partition.

Planning Algorithm Alg. 2 accepts as input the current values of the input parame-
ters of an operation of an API, along with the existing partitions of the parameters. The
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Fig. 3. The percentages of the correct binding-decisions.

inputs of Alg. 2 further include the available service-instances of the API and the set
of the polynomial functions of the current predictive-models of the service instances. If
the current values of the input parameters do not belong to the existing partitions, Alg.
2 redefines the partitions by adjusting their endpoints (Alg. 2 (5-11)) and accordingly
redistributing their representative values11 (Alg. 2 (13-20)). Moreover, Alg. 2 adds the
current values of the input parameters to the proper partitions as their representative
values only if these partitions do not currently have such values (Alg. 2 (21-24)). Fol-
lowing, Alg. 2 uses the predictive models to predict the response times of the service
instances for the current values of the input parameters and returns back the instance
that has the lowest predicted-value11.

5 Experimental Evaluation

We evaluate our approach on five benchmarks, B1 – B5 (Section 5.2). Prior to present-
ing the results, we set up our experiments (Section 5.1).

5.1 Experimental Setup

We extended an existing auction app12 with a data-analytics back-end that uses the k-
means clustering algorithm. We implemented a research-prototype of the autonomic
11 We do not specify the algorithmic details of the functions UPDATE, ADD and SELECT, since

they are straightforward.
12 https://github.com/jagmohansingh/auction-system

https://github.com/jagmohansingh/auction-system
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Fig. 4. The percentages of the datasets used for rebuilding predictive models.

wrapper of the back-end in Java. Datasets collected from UC Irvine machine-learning
public repository13 were given as input to the app. We used all of the datasets where
the number (resp., dimensions) of the data points in the respective dataset was less than
12000 (resp., 12). We did it due to the computational constraints of the used machines.
As also the evaluation results show in Section 5.2, the usage of extra datasets from the
repository would have been redundant. In that way, we concluded to use 1456 datasets.
We run the experiments 1456 times, each time adding an extra dataset, starting with one
dataset and progressing with the remaining datasets in a random order.

The front-end of the auction app runs on a mobile phone14, the edge instance and
the wrapper on a laptop15 (that was connected to the same LAN with the mobile phone),
and the remote instance on a virtual machine deployed to the Google cloud16.

5.2 Evaluation Results

B1. How many binding decisions are correct?
During this experiment, each dataset is given as input to the wrapper. For each
dataset, the wrapper makes a binding decision between the edge instance and the

13 http://archive.ics.uci.edu/ml/index.php
14 1.9GHz CPU, 4GB RAM, Android 8.0.
15 2.70GHz CPU, Intel Core i5-5257U, 64-bit Windows 10 Home, 8GB RAM.
16 2.2GHz 2 vCPU, Intel Xeon E5 v4 (Broadwell) platform, 7.5GB RAM, Windows server 2016

(the cost of renting a more powerful machine for our experiments was very high).

http://archive.ics.uci.edu/ml/index.php
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Fig. 5. The percentages of the monitoring response-times used for rebuilding predictive models.

remote instance. We repeated this experiment for different numbers of partitions Q
of the domain values of parameters (the value of Q affects the times the predictive
models are reconstructed). Fig. 3 depicts the percentages of the correct binding-
decisions (i.e., the number of the correct decisions is divided by the number of
all the decisions). We observe from the results that the percentages of the correct
decisions are increasing with the increase of the number of the provided datasets
and are finally stabilized at the 90% of the total number of the decisions.

B2. How many datasets are used for rebuilding predictive models?
We present in Fig. 4 the percentages of the datasets that are used for rebuilding the
predictive models in the above experiments (i.e., the number of the used datasets is
divided by the number of all of the datasets). We observe from the results that the
percentages of the used datasets decrease with the increase of the number of the
provided datasets. Especially, a small percentage (20%-30%) of the total number
of the datasets is finally used. It further shows that the usage of extra datasets in the
experiment would have been redundant.

B3. How many monitoring response-times are used for rebuilding predictive models?
Fig. 5 depicts the percentages of the monitoring response-times of the edge/remote
instances used in the above experiments (i.e., the number of the used response-
times is divided by all of the monitoring response-times). We observe from the
results that the percentages of the used response-times decrease with the increase of
the number of the provided datasets. Especially, a small percentage (20%-30%) of
the total number of the monitoring response-times is finally used. Furthermore, as
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Fig. 6. The overhead added by the autonomic control-loop to the response time of the app.

expected, the curves of the percentages of the used datasets and the used response-
times in Fig. 4 and Fig. 5, respectively, are analogous.

B4. What is the overhead to the response-time of the app?
We present in Fig. 6 the percentages of the overhead to the response time of the
app from the usage of the autonomic mechanisms (i.e., the execution times of the
mechanisms is divided by the total response-times of the app). We observe from the
results that the overhead comes to the 10%-15% of the response time of the app.
The overhead is higher in the firstly provided datasets because the reconstruction
of the predictive models and the parameter partitions occur more frequent.

B5. What is the improvement to the response time of the app?
To examine the improvement, we divide the datasets into small-, medium-, and
large-sized datasets. We consider that the size of a dataset equals to the number of
the datapoints of the dataset17. The first two charts of Fig. 7 present the response
times of the app when it uses for small- and medium-sized datasets the remote
instance only or the edge instance only. The next two charts present the response
times of the app for large datasets18. The last two charts present the response times
of the app when it uses the wrapper. Comparing Fig. 7 (vi) against Fig. 7 (iii), we
observe that the wrapper selects the remote instance for large-sized datasets. On
the contrary, comparing Fig. 7 (v) against Fig. 7 (ii), we observe that the wrapper
selects the edge instance for small- and medium-sized datasets.
The above observations verify our intuition that Cloud machines are much more
efficient than Fog machines on large-sized datasets. Since the wrapper selects for
small- and medium-sized datasets the edge instance (instead of the original op-

17 We define the equally-sized intervals of the dataset sizes, (1, 4000], (4000, 8000] and (8000,
12000], which correspond to small-, medium-, and large-sized datasets, respectively.

18 The scale of the y-axis in the first two charts is different from the scale in the next two charts.
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Fig. 7. The response time of the app when it uses the edge/remote instances or the wrapper.

tion of the remote instance), the response time of the app is improved. To quan-
tify that improvement, we calculate for each small- and medium-sized dataset the
percentage of the decrease of the response time of the app by using the formula,
yremote−yedge

yremote
. Overall, the average improvement over all of the small- and medium-

sized datasets comes to the 50% of the original response-time of the app.

6 Threads to Validity

A possible threat to the internal validity of the study is the exclusion from the experi-
ments of the datasets that have more than 12000 datapoints and 12 dimensions. How-
ever, this threat may be mitigated based on the observation from the results that our
approach needs only the firstly provided 20%-30% of the datasets to stabilize the num-
ber of the correct binding-decisions. Regarding the external validity, our study does not
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explicitly associate the built predictive-models to the software/hardware properties of
machines or the machine/network load. To reduce this threat, our approach builds sep-
arate predictive-models for each service instance. Additionally, each model is built as a
function of the response time of an instance that is equal to sum of the execution time
of the instance on a machine and of the network latency. In this way, the models are
indicative of the network latency and the delay of machines to serve apps at the time
periods and the network locations that the monitoring measurements were made.

7 Conclusions & Future Work

We contributed with the specification of the conceptual model and the algorithmic
mechanisms of an autonomic wrapper of edge/remote instances of a mobile back-
end. The evaluation results on five benchmarks showed that the number of the correct
binding-decisions is the 90% of the total number of decisions, the number of the mon-
itoring data (datasets and response times) used for reconstructing predictive models is
the 20%-30% of the total number of data, the overhead added by the autonomic mech-
anisms comes to the 10%-15% of the response time of an app, and the response time of
an app is decreased to the 50% of its original response-time.

A future research-direction is to consider the synchronization time (spent by the
edge/remote instances for storing datasets) in the construction of predictive models.
Another direction is to explicitly associate the predictive models to the machine prop-
erties/load and the network properties/load. A final direction is to enhance the wrapper
with the capability to dynamically (de-)register service instances that are (not) available
on the Fog and the Cloud.
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