arXiv:1910.13323v2 [cs.CV] 1 Nov 2019

Resolution-independent meshes of superpixels

Vitaliy Kurlin and Philip Smith

Department of Computer Science, University of Liverpool

Abstract. The over-segmentation into superpixels is an important pre-
processing step to smartly compress the input size and speed up higher
level tasks. A superpixel was traditionally considered as a small cluster of
square-based pixels that have similar color intensities and are closely lo-
cated to each other. In this discrete model the boundaries of superpixels
often have irregular zigzags consisting of horizontal or vertical edges from
a given pixel grid. However digital images represent a continuous world,
hence the following continuous model in the resolution-independent for-
mulation can be more suitable for the reconstruction problem.

Instead of uniting squares in a grid, a resolution-independent super-
pixel is defined as a polygon that has straight edges with any possi-
ble slope at subpixel resolution. The harder continuous version of the
over-segmentation problem is to split an image into polygons and find a
best (say, constant) color of each polygon so that the resulting colored
mesh well approximates the given image. Such a mesh of polygons can
be rendered at any higher resolution with all edges kept straight.

We propose a fast conversion of any traditional superpixels into polygons
and guarantees that their straight edges do not intersect. The meshes
based on the superpixels SEEDS (Superpixels Extracted via Energy-
Driven Sampling) and SLIC (Simple Linear Iterative Clustering) are
compared with past meshes based on the Line Segment Detector. The ex-
periments on the Berkeley Segmentation Database confirm that the new
superpixels have more compact shapes than pixel-based superpixels.

1 Introduction

1.1 Over-segmentation for low-level vision

The important problem in low-level vision is to quickly detect key structures
such as corners and edges where color intensities substantially change. The
over-segmentation problem is to split an image into superpizels, which are small
patches of square-based pixels having similar colors and positions.

Traditional superpixels often have irregular shapes with zigzag boundaries of
only horizontal or vertical short edges. This rigid discretization can be avoided
if we allow edges of any length and direction, because continuous objects are
much better represented by polygons not restricted to a given pixel grid.

The color intensity in real images always changes gradually over 2-3 pixels
without jumps, see [I8, Fig. 1]. Hence an edge between different objects can be
inside a square pixel, not along its sides. These hurdles disappear if we look for
continuous objects represented by pixel values discretely sample on a grid.

2 V. Kurlin et al.

Fig. 1. SLIC superpixels (left) with zigzag boundaries of pixel-based superpixels are
converted into a resolution-independent mesh (right) of polygons with straight edges
that can be rendered at any higher resolution for better and smoother animations.

1.2 Resolution-independent polygonal superpixels

Digital images represent a continuous world around us, but are restricted to
a fixed pixel grid. We consider the over-segmentation problem in the following
resolution-independent formulation introduced by Viola et al. [18].

We split an image into a fixed number of possibly non-convex polygons so that

e all polygons have straight edges and vertices with any real coordinates (not
restricted to a given pixel grid, so independent of an initial image resolution);

e the resulting colored mesh (with a best constant color over each polygon)
approximates the original image, e.g. by minimizing an energy in section

Such a polygonal mesh can be rendered at any higher resolution and is called
resolution-independent. In general, a mesh for a rectangular image I C R? is a
graph G’ C R? that contains the boundary of I and consists of non-intersecting
line segments that split I into possibly non-convex polygons. Fig. [2]and 18 show
long thin superpixels for the tripod legs in the famous cameraman image.

1.3 Key contributions to the state-of-the-art for superpixels

e We solve the over-segmentation problem for polygonal resolution-independent
superpixels that have few straight edges with infinitely many possible slopes.

e The algorithm RIMe in section [3] can convert any pixel-based superpixels into
a resolution-independent mesh with quality guarantees in Theorem

e The experiments in section [f] confirm that the resolution-independent meshes
based on SEEDS and SLIC superpixels, achieve better results on objective mea-
sures, perform similarly to SEEDS and SLIC on the BSD benchmarks.

e RIMe beats all other resolution-independent superpixels on the objective re-
construction error and benchmarks of the Berkeley Segmentation Database [2].

Resolution-independent meshes of superpixels 3

Fig. 2. The pixel-based superpixels on the left (SEEDS and SLIC) have irregular zigzag
boundaries, which are straightened by the algorithm RIMe on the right.

2 Review of the past work on superpixels

We review the widely used algorithms for pixel-based and resolution-independent
superpixels for the harder reconstruction problem of continuous real-life objects.

2.1 Pixel-based superpixel algorithms

The first successful algorithms were based on the graph of the 4-connected pixel
grid [T6J5I1T]. The Lattice Cut algorithm by Moore et al. [I5] guarantees that the
final mesh of superpixels is regular as the original grid of pixels. The best quality
in this category is achieved by Entropy Rate Superpixels (ERS) of Lie et al. [13]
minimizing the entropy rate of a random walk on a graph. Based on Compact

4 V. Kurlin et al.

Superpizels by Veksler and Boykov [I7], the fastest algorithm is by Zhang et al.
[20] processing an average image from BSD500 in 0.5 sec. Our experiments will
use the algorithms SEEDS, SLIC from OpenCV, VLFeat libraries.

The Simple Linear Iterative Clustering (SLIC) algorithm by Achanta et al. [I]
forms superpixels by k-means clustering in a 5-dimensional space using 3 colors
and 2 coordinates per pixel. Because the search is restricted to a neighborhood
of a given size, the complexity is O(kmn), where n and m are the numbers of
pixels and iterations. The later Linear Spectral Clustering (LSC) by Li et al.
[12] is based on a weighted k-means clustering in a 10-dimensional space. The
SMURF algorithm by Luengo et al [I4] obtains superpixels in a parallelized way
within larger super-regions and alternates split/merge steps at several levels.

SEEDS (Superpixels Extracted via Energy-Driven Sampling) by Van den
Bergh et al. [3] seems the first superpixel algorithm to use a coarse-to-fine opti-
mization that progressively refines superpixels. At the initial coarse level, each
superpixel consists of large rectangular blocks of pixels. At the next level, all
blocks are subdivided into four rectangles and any boundary block can move
to an adjacent superpixel, an so on until all blocks become pixels. SEEDS puts
the colors of all pixels within each fixed superpixel are put in bins (five for each
color channel) and iteratively maximizes the sum of deviations of all bins from
an average bin within every superpixel. The color deviation is maximal for a
superpixel whose pixels have colors in one bin.

The similar Coarse-to-Fine (CtF) algorithm by Yao et al. [19] minimizes the
discrete Reconstruction Error from section [d] The recent improvement of this
Coarse-to-Fine approach [9] allows the user to make shapes of superpixels more
round by giving more weight to an isoperimetric quotient.

2.2 [Edge detection at subpixel resolution

Both past algorithms for resolution-independent superpixels (Voronoi and CCM:
Convex Constrained Meshes) are based on the Line Segment Detector algorithm
(LSDA), which outputs line segments at subpixel resolution [§]. The parameters
are a tolerance 7 for angles between gradients and a threshold e for false alarms.
For the values 7 = 22.5°, ¢ = 1 and the random model of a uniformly distributed
gradient field, the LSDA outputs on average at most one false positive.

The LSDA edges have endpoints and gradients with any real coordinates,
but the use has no control over a number of line segments in the output. The
recent persistence-based line segment detector [10] guarantees edges without
intersections and small angles.

2.3 Resolution-independent polygonal superpixels

The Voronoi superpizels by Duan and Lafarge [4] split an image into polygons
not restricted to a pixel grid. For points p1,...,px (called centers), the Voronoi
cell V(p;) is the polygonal neighborhood of the center p; consisting of all points
closer (in the Euclidean distance) to p; than to other centers. These centers are

Resolution-independent meshes of superpixels 5

chosen on both sides of each LSDA edge so that all LSDA edges are covered by
the boundaries of Voronoi cells, though no guarantees were proved. The main
advantage of Voronoi superpixels is their almost ”round” shape, see section

The CCM superpixels (Convex Constrained Meshes) by Forsythe et al. [6]
directly include LSDA edges as hard constraints, which improves the Boundary
Recall, see section [4 After post-processing LSDA edges to get a straight line
graph without self-intersections, this graph is converted into a full mesh of convex
polygons that are guaranteed to have no angles smaller than 20°. The boundaries
of CCM superpixels are always in a small offset of LSDA edges.

Both Voronoi and CCM superpixels crucially depend on the quality of LSDA,
which may not output a desired number of strongest edges. Pixel-based super-
pixels are better optimised for the Boundary Recall. The goal of the paper is to
transfer this advantage to new resolution-independent superpixels.

3 RIMe: a resolution-independent mesh of polygons

3.1 RIMe algorithm: pipeline, input, parameters and output

The algorithm RIMe converts any pixel-based superpixels into a mesh of poly-
gons whose straight edges approximate boundaries with guarantees in Theo-
rem The input is the matrix s(p) of superpixel indices for every pixel p = (i, j).

any pixel-based Stage 10 1ygonal “ot39€ 2 giraightened ot29€ 3 RIMe mesh of
superpixels boundaries boundaries merged polygons

Fig. 3. Pipeline of the RIMe algorithm through 3 stages in subsection [3.2]

RIMe essentially uses the OpenMesh library and saves the final mesh to a
.off file. One can find the most optimal color for every polygon and output the
colored mesh as a small representation for further processing, see section [

3.2 Conversion algorithm RIMe step-by-step

Stage 1: Convert any traditional superpixels into a proper pixel-based mesh by
extracting polygonal boundaries of any given pixel-based superpixels. All past
algorithms output a matrix s(p) of superpixel labels (integer indices) over all
pixels p. Unfortunately, the union of pixels having the same label s is often
disconnected (as a subset in the 4-connected or 8-connected grid). Even if con-
nected, one superpixel can be surrounded by another superpixel (in this case
the surrounding superpixel can be better split into two smaller superpixels). We
convert any output into a mesh whose polygons are connected unions of pixels.

6 V. Kurlin et al.

Step 1.1. Starting from an initial position at a corner of an image, we follow the
boundary of a current polygon within the pixel grid and check at every pixel
corner whether we should turn left/right or go forward as shown in Fig @

Fig. 4. Choosing the next point at a corner (colors indicate different superpixels).

Step 1.2. When we meet a new superpixel, we save an initial arrow (a directed
edge between pixels) to make sure that we later go around the new superpixel.

Step 1.3. After we have returned to the initial position, a closed boundary of a
superpixel was traced and we check if there are any unexplored superpixels.

Step 1.4. Check that all found superpixels have the expected areas, otherwise
we find more connected components by looking at unexplored boundary pixels
from the matrix of superpixel labels, so the number of superpixels can increase.

Step 1.5. If a found polygon still does not have the expected area, it must sur-
round another polygon. We add a straight edge (say, D) between two closest
vertices on the boundaries of the superpixels to split the surrounding superpixel
into two. This edge D; cannot intersect another edge (say, D), which would
contradict Lemma [I] for the quadrangle with the intersecting diagonals Dy, Ds.

Lemma 1 In any convex quadrilateral with all sides longer than the shortest
diagonal, the longest diagonal is longer than any side.

Proof. Triangle inequality implies that the sum of the two diagonals is greater
than the sum of either pair of opposite sides. Assuming that the shortest diagonal
is shorter than any side, the longest diagonal should be longer than any side. O

Stage 2: Straighten all boundaries of a mesh from Stage 1. The key advantage of
RIMe is the possibility to run Stage 2 in parallel for different pairs of polygons.

Step 2.1: Find the edge chain (a sequence of successive non-boundary edges)
between any two adjacent polygons.

Step 2.2: Given a chain between vertices A, B, find the maximum Euclidean
distance d¢ from an intermediate vertex C' to the straight line AB, see Fig.

Step 2.3: We replace the whole chain by the segment AB if

Color_Offset

1 th dist de<lorde < ————,
(1) ¢ max distance do or de Color_difference

Resolution-independent meshes of superpixels 7

C * cr——
® d | ® &. C
C _—"‘B B B
> —‘4’ J
AL A A

Fig. 5. Straightening polygonal chains of edges recursively in Step 2.3 when d¢ is small.

where Color_difference is the absolute difference between average intensities (es-
timated from pixel-based superpixels in Stage 1) of the polygons Fi, F» on both
sides of the chain.

Step 2.4: For do > 1, we check that the new potential edge AB does not intersect
any existing edges of the polygons F1, F5 sharing the chain. We check if AB has
angles more than Min_Angle all incident edges in the current mesh.

Step 2.5: If any condition in Steps 2.3-2.4 fails, we recursively straighten the
subchains AC, CB as above.

Stage 3: Merge adjacent polygons whose average intensities differ by less than
Max_Color_Dif. Many images have uniform backgrounds and superpixels con-
sisting of pixels with the same intensity. Hence merging the resulting polygonal
superpixels keeps important edges from a given image.

3.3 Theoretical guarantees (proved in appendices)

We assume that pixel-based superpixels are given with their average intensities,
otherwise these averages can be quickly computed for Step 2.3. Apart from these
averages, the algorithm RIMe accesses only a smaller number m of boundary
pizels that have at least one neighboring pixel from a different superpixel.

Proposition 2 The algorithm RIMe in section[3 has the linear running time in
the number m of boundary pizels that are not strictly inside one superpizel.

Let d be the Euclidean distance between points in R?. The r-offset (dilation
with a disk of radius r) of any S C R? is its thickened neighborhood {p € R? :
d(p,S) < r}, where d(p,S) = min{d(p,q) : ¢ € S} is the distance from p to S.

Theorem 3 The inequality de < 1 in (1) implies that

(@a} for any pizel-based superpizels, the edges of a resolution-independent mesh
can meet only at endpoints.

Moreover, the conversion algorithm RIMe guarantees that

(@b} all angles between incident edges in a final resolution-independent mesh are
at least Min_Angle,

(@c) any chain of edges between original superpizels with Color_difference is re-
Color_Offset

placed by a polygonal line within the Color_difference

-offset of the original chain.

8 V. Kurlin et al.

80% | Boundary Recall CUE benchmark

SEEDS RIMe

5% graysSEED 97

0%

SLIC RIMe SLIC RIMe

65%
60% CCM 6%
Voronol

55%
50% SEEDS Voronol 7

RiMe CCM
45%

4% gray SEEDS

40%

50 150 250 350 450 50 150 250 350 450 550

average number of superpixels average number of superpixels

Fig. 6. Boundary Recall (1 better). Corrected Undersegmentation Error ({ better).

The value Color_Offset = 30 means that any chain between polygons whose
average intensities differ by 10 is straightened within a 3-pixel neighborhood.

4 Experimental comparison of six algorithms on BSD

The Berkeley Segmentation Database BSD [2] has 500 images widely used for
evaluating segmentation algorithms due to (sometimes imperfect) human-sketched
ground truth boundaries. For an image I, let I = UG, be a segmentation into
ground truth regions and I = Ui?:lSi be an oversegmentation into superpixels
produced by an algorithm. Each quality measure below compares the superpixels
S1,...,Sk with the best suitable ground truth for every image from the BSD.

Let G(I) = UG, be the union of ground truth boundary pixels and B(I) be
the set of boundary pixels produced by a superpixel algorithm. For a distance
¢ in pixels, the Boundary Recall BR(c) is the ratio of ground truth boundary
pixels p € G(I) within 2 pixels from the superpixel boundary B(I).

Van den Bergh et al. [3] suggested the Corrected Undersegmentation Error
CUE = % XZ: |Si = Gmaz(Si)|, where Giqz(S;) is the ground truth region having
the largest overlap with S;. The Achievable Segmentation Accuracy is ASA =
% ; mjax |S;NG,|. If a superpixel S; is covered by a ground truth region G, then
|S; NG| = |S;| is the maximum value. Otherwise max |S; NG| is the maximum

area of S; covered by the most overlapping region G;. If we use superpixels for
the higher level task of semantic segmentation, then ASA is the upper bound
on the number of pixels that are wrongly assigned to final semantic regions. All
values of BR, CUE, ASA are in [0,1] and can be measured in percents.

Resolution-independent meshes of superpixels 9

ASA benchmark 119%| discrete Reconstruction Error

92%
91%
90%
89%

/

CCM

Voronol

SLIC RIMe

Voronol 107

B88%
87%
86%
85%
B847%
B837%

SLIC RIMe 9%

8%
SEEDS RIMe SEEDS RIMe

50 150 250 350 450 550 50 150 250 350 450 550
average number of superpixels average number of superpixels

Fig. 7. Achievable Segm. Accuracy (1 better). Discrete Reconstruction Error (| bet-
ter).

The BSD benchmarks above involve some parameters, e.g. the 2-pixel offset
for the Boundary Recall, which can be hard to justify. That is why several
objective cost functions were proposed in an energy minimization framework.
The main energy term for CtF superpixels [I9] depends only on pixel intensities
as follows and can be called the discrete Reconstruction Error:

2
dRE = Z HIntensityp — average intensity of S (p)H , where

pixels p

S(p) is the pixel-based superpixel containing a pixel p. For colored images, the
intensity can be considered as a vector of 3 colors with any (say, Euclidean)
norm. So dRE objectively measures how well the colored mesh (with average
intensities over all superpixels) approximates the original image over all pixels.

Compactness measures for superpixels were used as regularizers by different
authors [I7JI9]. We propose the simplest version based on the isoperimetric

4 S
quotient Q(S) = La(z), which has the maximum value 1 for a round
perimeter*(S)
. . Q(S5)
disk S. The Compactness is the average Comp = > -
#superpixels

superpixels S
Here are the parameters of the RIMe superpixels for benchmarking below.

e Color_Offset = 30 is used for straightening in Step 2.3 and controls approxi-
mation guarantees in Theorem

e Max_Color_Dif = 2 is the maximum (grayscale) intensity difference for merging
adjacent polygons in Stage 3 (larger values will lead to larger superpixels).

e Min_Angle = 30° (can be 0) is the minimum angle between adjacent edges
(only to avoid narrow triangles).

10 V. Kurlin et al.

120QTi
/5% Compactness Voronol e, ms
‘—_—__H\
5597 com g00
45% 600
3% 400
559 200 SLIC RiMe
‘_______‘—o—*‘_‘
— T T SFEDS RIMe CCM

15% 0 e e———de Yl S D I

50 150 250 350 450 550 50 150 250 350 450
average number of superpixels average number of superpixels

Fig. 8. Compactness (1 better). Time on 8G RAM 2.6 GHz Intel Core i5 (] better).

Fig. [0} [7] [show 6 benchmarks for 6 superpixel algorithms. Each dot on
the curves corresponds to a single run on 500 images and has the coordinates
(average number of superpixels, average benchmark value over BSD).

The SLIC algorithm crucially uses 3 color values (converted to a Lab space)
and we marked its curve as . We ran SEEDS on grayscale version
of BSD images and marked the curve by , because both Voronoi
and CCM algorithms accept only a grayscale input needed for LSDA edges. The
corresponding outputs of RIMe are marked by SLIC RIMe, SEEDS RIMe.

The two remaining curves are for Voronoi [4] and CCM meshes [7]. Fig. [9]
shows that RIMe conversions lead to visually better reconstructions than the
only other resolution-independent superpixels on Voronoi and CCM meshes.

5 Conclusions, applications and further problems

Starting from any pixel-based superpixels, the RIMe conversion produces polyg-
onal superpixels with almost the same BSD benchmarks BR, CUE, ASA and the
objective error dRE in Figs. [f] [7} In comparison with any pixel-based superpix-
els, polygonal superpixels have much fewer edges (no long zigzags in boundaries)
with slopes of any potential direction (not only horizontal or vertical).

The RIMe superpixels have twice better compactness (more “round”) shapes
than their original pixel-based superpixels such as SEEDS and SLIC in Fig. [§
The RIMe conversions of SLIC, SEEDS outperform other polygonal resolution-
independent superpixels (Voronoi and CCM) on BR, CUE, ASA, dRE.

When a resolution of the cameraman image is decreased as in the last figure of
supplementary materials, pixel-based superpixels include more and more visible
zigzags, while corresponding RIMe superpixels keep nice straight boundaries.

Resolution-independent meshes of superpixels 11

The key advantage of polygonal resolution-independent superpixels is the
possibility to render a polygonal mesh at any higher resolution. This up-scaling
can convert low resolution photos into high-resolution images. In Computer
Graphics, polygonal meshes with few edges can be easily manipulated to im-
prove animations converted from traditional videos by cheap cameras.

The next step is to optimize positions of branched vertices, for example by
minimizing an energy containing the exact reconstruction error and compactness.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Siisstrunk, S.: Slic super-
pixels compared to state-of-the-art superpixel methods. T-PAMI 34 (2012)
2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. Transactions PAMI 33, 898-916 (2011)
3. Van de Bergh, M., Boix, X., Roig, G., Van Gool, L.: Seeds: superpixels extracted
via energy-driven sampling. Int J Computer Vision 111, 298-314 (2015)
4. Duan, L., Lafarge, F.: Image partitioning into convex polygons. In: Proceedings of
CVPR (Computer Vision and Pattern Recognition). pp. 3119-3127 (2015)
5. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int
J Computer Vision 59, 167-181 (2004)
6. Forsythe, J., Kurlin, V.: Convex constrained meshes for superpixel segmentations
of images. J Electronic Imaging 26(6)(061609) (2017)
7. Forsythe, J., Kurlin, V., Fitzgibbon, A.: Resolution-independent superpixels based
on convex constrained meshes. In: Proceedings of ISVC (2016)
8. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a line
segment detector. Image Processing On Line 2, 35-55 (2012)
9. Kurlin, V., Harvey, D.: Superpixels optimized by color and shape. In: Proc. EMM-
CVPR 2017, Lecture Notes in Computer Science. vol. 10746, pp. 297-311 (2018)
10. Kurlin, V., Muszynski, G.: A persistence-based approach to automatic detection
of line segments in images. In: Proceedings of CTIC. pp. 137-150 (2019)
11. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Siddiqi, K.: Turbopixels: fast
superpixels using geometric flows. Transactions PAMI 31, 2290-2297 (2009)
12. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: Pro-
ceedings of CVPR. pp. 1356-1363 (2015)
13. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel
segmentation. In: Proceedings of CVPR. pp. 2097 — 2104 (2011)
14. Luengo, I., Basham, M., French, A.: Smurfs: Superpixels from multi-scale refine-
ment of super-regions. In: Proceedings of BMVC (2016)
15. Moore, A., Prince, S., Warrell, J.: Lattice cut — constructing superpixels using layer
constraints. In: Proceedings of CVPR. pp. 2117-2124 (2010)
16. Shi, J., Malik, J.: Normalized cuts and image segmentation. Transactions PAMI
22, 888-905 (2000)
17. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy
optimization framework. In: Proceedings of ECCV. pp. 211-224 (2010)
18. Viola, F., Fitzgibbon, A., Cipolla, R.: A unifying resolution-independent formula-
tion for early vision. In: Proceedings of CVPR. pp. 494-501 (2012)
19. Yao, J., Boben, M., Fidler, S., Urtasun, R.: Real-time coarse-to-fine topologically
preserving segmentation. In: Proceedings of CVPR. pp. 216-225 (2015)
20. Zhang, Y., Hartley, R., Mashford, J., Burn, S.: Superpixels via pseudo-boolean
optimization. In: Proceedings of ICCV. pp. 211-224 (2011)

12 V. Kurlin et al.

Fig.9. Row 1: pixel-based SEEDS. Row 2: better SEEDS with RIMe. Row 3:
SLIC. Row 4: better SLIC with RIMe. Row 5: Voronoi superpixels. Row 6: CCM
superpixels. Column 1: superpixel meshes. Column 2: reconstructions with average
colors. Column 3: zoomed-in parts of reconstructions by small orange rectangles.

	Resolution-independent meshes of superpixels

