Skip to main content

Occlusion and Collision Aware Smartphone AR Using Time-of-Flight Camera

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11845))

Included in the following conference series:

Abstract

The development of Visual Inertial Odometry (VIO) systems such as ARKit and ARCore has brought smartphone Augmented Reality (AR) to mainstream. However, interactions between virtual objects and real objects are still limited due to the lack of 3D sensing capability. Recently, smartphone makers have been touting Time-of-Flight (ToF) cameras on their phones. ToF cameras can determine depth information in a photo using infrared light. By understanding the 3D structure of the scene, more AR capabilities can be enabled. In this paper, we propose practical methods to process ToF depth maps in real time and enable occlusion handling and collision detection for AR applications simultaneously. Our experimental results show real time performance and good visual quality for both occlusion rendering and collision detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliaga, D.G.: Virtual and real object collisions in a merged environment. In: Proceedings of Virtual Reality Software and Technology 1994, pp. 287–298 (1994)

    Google Scholar 

  2. Apple: ARKit3 (2019). https://developer.apple.com/augmented-reality/arkit/

  3. Breen, D.E., Whitaker, R.T., Rose, E., Tuceryan, M.: Interactive occlusion and automatic object placement for augmented reality. Comput. Graph. Forum 15(3), 11–22 (1996)

    Article  Google Scholar 

  4. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (ToG) 21(3), 594–603 (2002)

    Article  Google Scholar 

  5. Brochu, T., Edwards, E., Bridson, R.: Efficient geometrically exact continuous collision detection. ACM Trans. Graph. (ToG) 31(4), 96 (2012)

    Article  Google Scholar 

  6. Chen, L., Lin, H., Li, S.: Depth image enhancement for Kinect using region growing and bilateral filter. In: Proceedings of the 21st International Conference on Pattern Recognition, pp. 3070–3073 (Nov 2012)

    Google Scholar 

  7. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of SIGGRAPH 1996, pp. 303–312 (1996)

    Google Scholar 

  8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  9. Holynski, A., Kopf, J.: Fast depth densification for occlusion-aware augmented reality. ACM Trans. Graph. 37(6), 194 (2019)

    Google Scholar 

  10. Hornácek, M., Rhemann, C., Gelautz, M., Rother, C.: Depth super resolution by rigid body self-similarity in 3D. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1123–1130, June 2013

    Google Scholar 

  11. Hui, T.-W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 353–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_22

    Chapter  Google Scholar 

  12. Klingensmith, M., Dryanovski, I., Srinivasa, S., Xiao, J.: Chisel: Real time large scale 3D reconstruction onboard a mobile device using spatially hashed signed distance fields. In: Robotics: Science and Systems, vol. 4, p. 1 (2015)

    Google Scholar 

  13. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22, May 2018

    Google Scholar 

  14. Lee, D., Lee, S.G., Kim, W.M., Lee, Y.J.: Sphere-to-sphere collision estimation of virtual objects to arbitrarily-shaped real objects for augmented reality. Electron. Lett. 46(13), 915–916 (2010)

    Article  Google Scholar 

  15. Li, Y., Min, D., Do, M.N., Lu, J.: Fast guided global interpolation for depth and motion. ECCV 2016, 717–733 (2016)

    Google Scholar 

  16. Luo, T., Liu, Z., Pan, Z., Zhang, M.: A virtual-real occlusion method based on GPU acceleration for MR. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1068–1069, March 2019

    Google Scholar 

  17. Matyunin, S., Vatolin, D., Berdnikov, Y., Smirnov, M.: Temporal filtering for depth maps generated by Kinect depth camera. In: 2011 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pp. 1–4, May 2011

    Google Scholar 

  18. Miles, H., Seungkyu, L., Ouk, C., Radu, H.: Time-of-Flight Cameras: Principles, Methods and Applications. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4658-2

    Book  Google Scholar 

  19. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014)

    Article  MathSciNet  Google Scholar 

  20. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136, October 2011

    Google Scholar 

  21. Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. (ToG) 32(6), 169 (2013)

    Article  Google Scholar 

  22. Park, J., Kim, H., Tai, Y.-W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: 2011 International Conference on Computer Vision, pp. 1623–1630, November 2011

    Google Scholar 

  23. Qi, F., Han, J., Wang, P., Shi, G., Li, F.: Structure guided fusion for depth map inpainting. Pattern Recogn. Lett. 34(1), 70–76 (2013)

    Article  Google Scholar 

  24. Richardt, C., Stoll, C., Dodgson, N.A., Seidel, H., Theobalt, C.: Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. Comput. Graph. Forum 31(2), 247–256 (2012)

    Article  Google Scholar 

  25. Roxas, M., Hori, T., Fukiage, T., Okamoto, Y., Oishi, T.: Occlusion handling using semantic segmentation and visibility-based rendering for mixed reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST 2018, pp. 20:1–20:8. ACM, New York (2018)

    Google Scholar 

  26. Song, X., Dai, Y., Qin, X.: Deep depth super-resolution: learning depth super-resolution using deep convolutional neural network. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 360–376. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_22

    Chapter  Google Scholar 

  27. Tang, M., Curtis, S., Yoon, S.E., Manocha, D.: ICCD: interactive continuous collision detection between deformable models using connectivity-based culling. IEEE Trans. Visual Comput. Graphics 15(4), 544–557 (2009)

    Article  Google Scholar 

  28. Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D., Gross, M.: Optimized spatial hashing for collision detection of deformable objects. In: Proceedings of the Vision, Modeling, Visualization (VMV), pp. 47–54 (2003)

    Google Scholar 

  29. Tian, Y., Li, C., Guo, X., Prabhakaran, B.: Real time stable haptic rendering of 3D deformable streaming surface. In: Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys 2017, pp. 136–146. ACM, New York (2017)

    Google Scholar 

  30. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 2017 International Conference on 3D Vision (3DV), pp. 11–20, October 2017

    Google Scholar 

  31. Valentin, J.P.C., et al.: Depth from motion for smartphone AR. ACM Trans. Graph. 37(6), 193 (2019)

    Google Scholar 

  32. Walton, D.R., Steed, A.: Accurate real-time occlusion for mixed reality. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, VRST 2017, pp. 11:1–11:10. ACM, New York (2017)

    Google Scholar 

  33. Weerasekera, C.S., Dharmasiri, T., Garg, R., Drummond, T., Reid, I.D.: Just-in-time reconstruction: inpainting sparse maps using single view depth predictors as priors. In: International Conference on Robotics and Automation, pp. 1–9 (2018)

    Google Scholar 

  34. Xie, J., Feris, R., Sun, M.T.: Edge-guided single depth image super resolution. IEEE Trans. Image Process. 25(1), 428–438 (2016)

    Article  MathSciNet  Google Scholar 

  35. Xie, J., Feris, R., Yu, S.S., Sun, M.T.: Joint super resolution and denoising from a single depth image. IEEE Trans. Multimedia 17(9), 1525–1537 (2015)

    Article  Google Scholar 

  36. Xu, Y., Wu, Y., Zhou, H.: Multi-scale voxel hashing and efficient 3D representation for mobile augmented reality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1505–1512 (2018)

    Google Scholar 

  37. Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 175–185, June 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Ma, Y., Quan, S., Xu, Y. (2019). Occlusion and Collision Aware Smartphone AR Using Time-of-Flight Camera. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics