Skip to main content

Benchmarking Video with the Surgical Image Registration Generator (SIRGn) Baseline

  • Conference paper
  • First Online:
  • 1421 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11845))

Abstract

Augmented Reality (AR) surgical image guidance overlays preoperative data into the surgeon’s view in real time during the procedure. Non-rigid 3D registration is a critical and often challenging step for AR surgical image guidance. Since surgical environments vary greatly and registration must by done quickly and accurately, it is unlikely that one registration technique will work well over different surgical scenarios. Unfortunately, it is currently challenging to evaluate the accuracy and effectiveness of 3D registration techniques on surgical scenes. In this work, we provide a novel method to benchmark quality of non-rigid 3D surface registration. Our method provides a triangular mesh overlay representing the quality of registration and can highlight areas of unacceptably poor registration performance given some specified tolerance. We use the method to evaluate the quality of two existing non-rigid registration approaches on surgical video.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Example code and data available at: https://github.com/KastnerRG/SIRGn.git.

References

  1. Pessaux, P., Diana, M., Soler, L., Piardi, T., Mutter, D., Marescaux, J.: Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck’s archives of surgery 400(3), 381–385 (2015)

    Article  Google Scholar 

  2. Ieiri, S., et al.: Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr. Surg. Int. 28(4), 341–346 (2012)

    Article  Google Scholar 

  3. Onda, S., et al.: Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery. J. Hepato-Biliary-Pancreat. Sci. 20(4), 448–453 (2013)

    Article  Google Scholar 

  4. Kowalczuk, J., et al.: Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery. Surg. Endosc. 26(12), 3413–3417 (2012)

    Article  Google Scholar 

  5. Schoob, A., Kundrat, D., Kleingrothe, L., Kahrs, L.A., Andreff, N., Ortmaier, T.: Tissue surface information for intraoperative incision planning and focus adjustment in laser surgery. Int. J. Comput. Assist. Radiol. Surg. 10(2), 171–181 (2015)

    Article  Google Scholar 

  6. Hughes-Hallett, A., Mayer, E.K., Pratt, P., Mottrie, A., Darzi, A., Vale, J.: The current and future use of imaging in urological robotic surgery: a survey of the european association of robotic urological surgeons. Int. J. Med. Robot. Comput. Assist. Surg. 11(1), 8–14 (2015)

    Article  Google Scholar 

  7. Volonté, F., et al.: Console-integrated stereoscopic osirix 3D volume-rendered images for da vinci colorectal robotic surgery. Surg. Innov. 20(2), 158–163 (2013)

    Article  Google Scholar 

  8. Fitzpatrick, J.M.: Detecting Failure, Assessing Success. CRC Press, New York (2001)

    Book  Google Scholar 

  9. Hong, J., Matsumoto, N., Ouchida, R., Komune, S., Hashizume, M.: Medical navigation system for otologic surgery based on hybrid registration and virtual intraoperative computed tomography. IEEE Trans. Biomed. Eng. 56(2), 426–432 (2009)

    Article  Google Scholar 

  10. Shekhar, R., et al.: Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg. Endosc. 24(8), 1976–1985 (2010)

    Article  Google Scholar 

  11. Krucker, J.F., LeCarpentier, G.L., Fowlkes, J.B., Carson, P.L.: Rapid elastic image registration for 3-D ultrasound. IEEE Trans. Med. Imaging 21(11), 1384–1394 (2002)

    Article  Google Scholar 

  12. Grachev, I.D., et al.: A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. NeuroImage 9(2), 250–268 (1999)

    Article  Google Scholar 

  13. Nanayakkara, N.D., Chiu, B., Samani, A., Spence, J.D., Samarabandu, J., Fenster, A.: Twisting and bending model-based nonrigid image registration technique for 3-D ultrasound carotid images. IEEE Trans. Med. Imaging 27(10), 1378–1388 (2008)

    Article  Google Scholar 

  14. Tamura, Y., et al.: Surface-based registration accuracy of CT-based image-guided spine surgery. Eur. Spine J. 14(3), 291–297 (2005)

    Article  Google Scholar 

  15. Parsai, E.I., Ayyangar, K.M., Dobelbower, R.R., Siegel, J.A.: Clinical fusion of three-dimensional images using bremsstrahlung spect and CT. J. Nucl. Med. 38(2), 319 (1997)

    Google Scholar 

  16. Nelson, S.J., et al.: Alignment of volume MR images and high resolution [18f] fluorodeoxyglucose pet images for the evaluation of patients with brain tumors. J. Comput. Assist. Tomogr. 21(2), 183–191 (1997)

    Article  Google Scholar 

  17. Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging 17(5), 694–702 (1998)

    Article  Google Scholar 

  18. West, J.B., Fitzpatrick, J.M., Toms, S.A., Maurer Jr., C.R., Maciunas, R.J.: Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4), 810–817 (2001)

    Google Scholar 

  19. Hoffmann, C., et al.: Accuracy quantification of a deformable image registration tool applied in a clinical setting. J. Appl. Clin. Med. Phys. 15(1), 237–245 (2014)

    Article  Google Scholar 

  20. Thompson, S., et al.: In vivo estimation of target registration errors during augmented reality laparoscopic surgery. Int. J. Comput. Assist. Radiol. Surg. 13(6), 865–874 (2018)

    Article  Google Scholar 

  21. Wong, V.W.S., et al.: Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 51(2), 454–462 (2010)

    Article  Google Scholar 

  22. Imperial College, London: Hamlyn centre laparoscopic/endoscopic video datasets (2019). http://hamlyn.doc.ic.ac.uk/vision/. Accessed 15 Jan 2019

  23. Castillo, R., et al.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 1849 (2009)

    Article  Google Scholar 

  24. Bernhardt, S., Nicolau, S.A., Soler, L., Doignon, C.: The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 37, 66–90 (2017)

    Article  Google Scholar 

  25. Brown, B.J., Rusinkiewicz, S.: Global non-rigid alignment of 3-d scans. In: ACM Transactions on Graphics (TOG), vol. 26, no. 21. ACM (2007)

    Google Scholar 

  26. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007, CVPR 2007, p. 1–8. IEEE (2007)

    Google Scholar 

  27. Chen, Q., Koltun, V.: Robust nonrigid registration by convex optimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2039–2047 (2015)

    Google Scholar 

  28. Barrow, M., Burns, S.M., Kastner, R.: A FPGA accelerator for real-time 3D non-rigid registration using tree reweighted message passing and dynamic Markov random field generation. In: 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pp. 335–3357. IEEE (2018)

    Google Scholar 

  29. Chang, P.-L., Stoyanov, D., Davison, A.J., Edwards, P.E.: Real-time dense stereo reconstruction using convex optimisation with a cost-volume for image-guided robotic surgery. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 42–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_6

    Chapter  Google Scholar 

  30. Padoy, N., Blum, T., Ahmadi, S.A., Feussner, H., Berger, M.O., Navab, N.: Statistical modeling and recognition of surgical workflow. Med. Image Anal. 16(3), 632–641 (2012)

    Article  Google Scholar 

  31. Bouarfa, L., Jonker, P.P., Dankelman, J.: Discovery of high-level tasks in the operating room. J. Biomed. Inform. 44(3), 455–462 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Barrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrow, M., Ho, N., Althoff, A., Tueller, P., Kastner, R. (2019). Benchmarking Video with the Surgical Image Registration Generator (SIRGn) Baseline. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics