
Lidar-Monocular Visual Odometry with Genetic Algorithm for
Parameter Optimization

Adarsh Sehgal, Ashutosh Singandhupe, Hung Manh La, Alireza Tavakkoli, Sushil J. Louis

Abstract— Lidar-Monocular Visual Odometry (LIMO), a
odometry estimation algorithm, combines camera and LIght
Detection And Ranging sensor (LIDAR) for visual localization
by tracking camera features as well as features from LIDAR
measurements, and it estimates the motion using Bundle
Adjustment based on robust key frames. For rejecting the
outliers, LIMO uses semantic labelling and weights of the
vegetation landmarks. A drawback of LIMO as well as many
other odometry estimation algorithms is that it has many
parameters that need to be manually adjusted according to
the dynamic changes in the environment in order to decrease
the translational errors. In this paper, we present and argue
the use of Genetic Algorithm to optimize parameters with
reference to LIMO and maximize LIMO’s localization and
motion estimation performance. We evaluate our approach on
the well known KITTI odometry dataset and show that the
genetic algorithm helps LIMO to reduce translation error in
different datasets.

I. INTRODUCTION AND RELATED WORK

Motion estimation has long been a popular subject of
research in which many techniques have been developed over
the years [1]. Much work has been done related to Visual
Simultaneous Localization and Mapping (VSLAM), also
referred to as Visual Odometry [2], which simultaneously es-
timates the motion of the camera and the 3D structure of the
observed environment. A recent review of SLAM techniques
for autonomous car driving can be found in [3]. Bundle
Adjustment is the most popular method for VSLAM. Bundle
Adjustment is a procedure of minimizing the re-projection
error between the observed point (landmarks in reference to
LIMO) and the predicted points. Recent developments make
use of offline VSLAM for mapping and localization [4]–[6].

Figure 1 illustrates the structure of the VSLAM pipeline
[7]. Algorithms such as ROCC [8] and SOFT [9] rely on pre-
processing and feature extraction which is in very contrast
to most of the methods that obtain scale information from a
camera placed at a different viewpoint [6], [10]–[12]. The
former mentioned algorithms (SOFT and ROCC) extract
robust and precise features and select them using special
techniques, and has managed to attain high performance on

Adarsh Sehgal, Ashutosh Singandhupe and Dr. Hung La are with the Ad-
vanced Robotics and Automation (ARA) Laboratory. Dr. Alireza Tavakkoli
is with the Computer Vision Laboratory (CVL). Dr. Sushil J. Louis is with
the Evolutionary Computing Systems Lab, University of Nevada, Reno, NV
89557, USA. Corresponding author: Hung La, email: hla@unr.edu

This material is based upon work supported by the National Aeronautics
and Space Administration (NASA) Grant No. NNX15AI02H issued through
the NVSGC-RI program under sub-award No. 19-21, and the RID program
under sub-award No. 19-29, and the NVSGC-CD program under sub-award
No. 18-54. This work is also partially supported by the Office of Naval
Research under Grant N00014-17-1-2558.

the KITTI Benchmark [13], even without Bundle Adjust-
ment.

The major disadvantage of stereo camera is it’s reliance
on extrinsic camera calibration. It was later observed that the
performance can be enhanced by learning a compensation of
the calibration bias through a deformation field [14]. LIght
Detection And Ranging sensor LIDAR-camera calibration is
also an expanding topic of research [15], [16] with accuracy
reaching a few pixels. Previous work has been done with
VSLAM and LIDAR [17]–[20]. Lidar-Monocular Visual
Odometry (LIMO) [7], uses feature tracking capability of
the camera and combines it with depth measurements from
a LIDAR but suffers from translation and rotation errors.
Later on, we describe our approach for increasing LIMO’s
robustness to translation errors.

Fig. 1: VSLAM pipeline. The input is temporal sequence of
images, and the system outputs a sparse reconstruction of
the observed environment and the camera poses. [10] [21]
[22] [7]. In this work, LIMO does not perform loop closure.

LIMO takes advantage of the depth information from
LIDAR which is to be used for feature detection in the
image. Outliers are rejected if do not meet the local plane
assumptions, and points on the ground plane are treated
for robustness. As illustrated in figure 1, in the VSLAM
pipieline, the depth information is fused with monocular
feature detection techniques. Another approach is taken for
prior estimation, landmark selection and key frame selection
to fulfill real time constraints. Unlike the approach in [18],
LIMO does not use any LIDAR-SLAM algorithms such as
Iterative Closest Point (ICP). The major drawback of LIMO
is that it has many parameters, which needs to be manually
tuned. LIMO suffers from translation and rotation errors
even more than existing algorithms such as Lidar Odometry
and Mapping (LOAM) [20] and Vision-Lidar Odometry
and Mapping (V-LOAM) [23]. Typically, researchers tune
parameters (in LIMO as well) in order to minimize these

ar
X

iv
:1

90
3.

02
04

6v
1 

 [
cs

.R
O

] 
 5

 M
ar

 2
01

9



errors but there always exists the possibility of finding better
parameter sets that may be optimized for specific camera
and LIDAR hardware or for specific scenarios. Hence,
there is a need to use optimization algorithms to increase
LIMO’s performance. In this paper, we propose using a
genetic algorithm (GA) to efficiently search the space of
possible LIMO parameter values to find precise parameter
that maximizes performance. Our experiments with this new
GA-LIMO algorithm show that GA-LIMO performs little
better than stock LIMO.

Much empirical evidence shows that evolutionary com-
puting techniques such as Genetic Algorithms (GAs) work
well as function optimizers in poorly-understood, non-linear,
discontinuous spaces [24]–[28]. GAs [29], [30] and the GA
operators of crossover and mutation [31] have been tested
on numerous problems. Closer to our research, GAs have
been applied to early SLAM optimization problems [32],
mobile localization using ultrasonic sensors [33] [34], and
in deep reinforcement learning [35]. This provides good
evidence for GA efficacy on localization problems, and our
main contribution in this paper is a demonstration of smaller
translation error when using a GA to tune LIMO parameter
values compared to the stock LIMO algorithm [7]. Our
experiments show that translation error is non-linearly related
to LIMO parameters, that is, translation error can vary non-
linearly based on the values of the LIMO’s parameters. The
following sections describe the LIMO, the GA and GA-
LIMO algorithms. We then show results from running LIMO
with GA tuned parameters on the KITTI odometry data
sequences [36].

This paper is organized as follows: Section 2 describes
the LIMO and GA algorithms. Section 3 describes the
combined GA-LIMO algorithm. Section 4 then specifies our
experiments and provides results. The last section delivers
conclusions and possible future work.

II. BACKGROUND

In this section, we present prior work related to our GA-
LIMO algorithm. We first describe the VSLAM pipeline and
then the LIMO algorithm.

A. Feature extraction and pre-processing

Figure 1 shows feature extraction’s procedure in the
pipeline. Feature extraction consists of tracking the features
and associating the features using the Viso2 library. [11] It
is further used to implement feature tracking which com-
prises of non-maximum suppression, sub-pixel refinement
and outlier rejection by flow. Deep learning is used to reject
landmarks that are moving objects. The neighborhood of the
feature point in a semantic image [37] is scanned, and if the
majority of neighboring pixels categorize to a dynamic class,
like vehicle or pedestrian, the landmark is excluded.

B. Scale Estimation

For scale estimation, the detected feature points from
camera is mapped to the depth extracted from LIDAR. LIMO
uses a one shot depth estimation approach. Initially LIDAR

point cloud is transformed into the camera frame and then
it is projected onto the image plane. In detail, the following
steps are executed for every feature point f :

1) A region of interest is selected around f which is a set
F consisting of projected LIDAR points.

2) A new set called foreground set Fseg is created by
segmenting the elements of F .

3) The elements of Fseg are fitted with a plane p. A
special fitting algorithm is used in case f belongs to
the ground plane.

4) To estimate the depth, p is intersected with the line of
sight corresponding to f .

5) For the previous estimated depth a test is performed.
Depth estimates that are more than 30m are rejected
since they could be uncertain. In addition, the angle
between the line of sight of the feature point and the
normal of the plane must be smaller than a threshold.

From the point clouds, neighborhoods for ordered point
clouds can be selected directly. However, projections of
the LIDAR points on the image are used, and the points
within a rectangle in the image plane around f are selected
in case the point clouds are unordered. Before the plane
estimation is performed, the foreground Fseg is segmented.
In the next step, a histogram of depth having a fixed bin
width of h = 0.3m is created and interpolated with elements
in F . LIDAR points of the nearest bin is used to perform
segmentation using all detected feature points. For estimating
the local surface around f precisely, fitting the plane to Fseg
can help. Three points are chosen from the points in Fseg ,
which traverse the triangle F∆ with maximum area. Depth
estimation is avoided if the area of F∆ is too small, to evade
incorrectly estimated depth.

However, the above technique cannot be used to estimate
the the depth of points on the ground plane because LIDAR
has a lower resolution in the perpendicular direction than in
a level direction. A different approach is followed to enable
depth estimation for a relevant ground plane. For solving this,
RANSAC with refinement is used on the LIDAR point cloud
to extract the ground plane [5]. In order to estimate feature
points on the road, points that corresponds to the ground
plane are segmented. Outliers are extracted by allowing only
local planes that lie close to the ground plane.

C. Frame to Frame Odometry

Perspective-n-Point-Problem [5] serves as the starting
point of the frame to frame motion estimation.

argmin
x,y,z,α,β,γ

∑
i

‖ϕi,3d→2d‖22 (1)

ϕ3d→2d = p̄i − π(pi, P (x, y, z, α, β, γ)), (2)

where p̄i is the observed feature point in the current frame,
pi is the 3D-point corresponding to p̄i, the transform from
the previous to the current frame is denoted by freedom
P (x, y, z, α, β, γ), which has three translation and three
rotation degrees of freedom. While π(...) is the projection
function from the 3D to 2D domain. The extracted features



with valid estimated depth depth from the environments that
has low structure and large optical flow may be very small.
LIMO introduces epipolar error as ϕ2d→2d [4].

ϕ2d→2d = p̄iF (
x

z
,
y

z
, α, β, γ)p̄i, (3)

where fundamental matrix F can be calculated from the
intrinsic calibration of the camera and from the frame to
frame motion of the camera. LIMO suggests the loss function
to be Cauchy function [4]: ρs(x) = a(s)2.log(1 + x

a(s)2 ),
where a(s) is the fix outlier threshold. For frame to frame
motion estimation, the optimization problem can be denoted
as:

argmin
x,y,z,α,β,γ

∑
i

ρ3d→2d(‖ϕi,3d→2d‖22) + ρ2d→2d(‖ϕi,2d→2d‖22).

(4)

D. Backend

LIMO proposes a Bundle Adjustment framework based on
keyframes , with key components as selection of keyframes,
landmark selection, cost functions and robustification mea-
sures. The advantage with this approach is that it retains
the set that carries information which are required for ac-
curate pose estimation as well as excludes the unnecessary
measurements. Keyframes are classified as required, rejected
and sparsified keyframes. Required frames are crucial mea-
surements. Frame rejection is done when the vehicle does not
move. The remaining frames are collected, and the technique
selects frames every 0.3s. Finally in keyframe selection,
length of optimization window is chosen.

An optimal set of landmarks should be well observable,
small, free of outliers and evenly distributed. Landmark se-
lection divides all landmarks into three bins, near, middle and
far, each of which have fixed number of landmarks selected
for the Bundle Adjustment. Weights of the landmarks are
then determined based on the semantic information. The
estimated landmark depth is taken into consideration by an
additional cost function,

ξi,j(ii, Pj) =

{
0, if li has no depth estimate

d̂i,j −
[
0 0 1

]
τ(li, Pj), else,

(5)

where li denotes the landmark, τ mapping from world frame
to camera frame and d̂ denotes the depth estimate. The
indices i, j denote combination of landmark-pose. A cost
function ν punishes deviations from the length of translation
vector,

ν(P1, P0) = ŝ(P1, P0)− s, (6)

where P0, P1 are the last two poses in the optimization
window and ŝ(P0, P1) = ‖translation(P−1P1)‖22, where
s is a constant with value of ŝ(P1, P0) before optimization.

While outliers need to be removed because they do not let
Least-Square methods to converge [38], [39], semantics and
cheirality only does preliminary outlier rejection. The LIMO

optimization problem can now be formulated as:

argmin
Pj∈P,li∈L,di∈D

w0‖ν(P1, P0‖22)+∑
i

∑
j

w1ρφ(‖φi,j(li, Pi)‖22) + w2ρξ(‖ξi,j(li, Pj)‖22), (7)

where φi,j(li, Pj) = l̄i,j − π(li, Pj) is the re-projection
error, and weights w0, w1 and w2 are used to scale the cost
functions to the same order of magnitude.

E. Genetic Algorithm (GA)

GA [24], [25], [29], [40] were designed to search poorly-
understood spaces, where exhaustive search may not be
feasible (because of search space and time space complexity),
and where other search techniques perform poorly. A GA
as a function optimizer tries to maximize a fitness tied to
the optimization objective. In general, evolutionary comput-
ing algorithms, and specifically GAs have had verifiable
success on a diversity of difficulty, non-linear, design and
optimization problems. GAs usually start with a randomly
initialization population of candidate solution encoded in
a string. Selection operators then focus search on higher
fitness areas of search space whereas crossover and mutation
operators generate new candidate solutions. We next explain
the specific GA used in this paper.

III. GA-LIMO ALGORITHM

In this section, we present the main contribution of our
paper. The specific GA searches through the space of param-
eter values used in LIMO for the values that maximizes the
performance and minimizes the translation error as a result of
pose estimation. We are targeting the following parameters:
outlier rejection quantile δ; maximum number of landmarks
for near bin εnear; maximum number of landmarks for
middle bin εmiddle; maximum number of landmarks for
far bin εfar and weight for the vegetation landmarks µ.
As described in the background section, rejecting outliers,
δ, plays an important role in converging to minimum, the
weight of outlier rejection thus has notable impact on the
translation error. The landmarks are categorized into three
bins, which also have great significance in translation error
calculation. Trees that have a rich structure results in feature
points that are good to track, but they can move. So, finding
an optimal weight for vegetation can significantly reduce
translation error. δ and µ range from 0 to 1, while εnear,
εmiddle and εfar range from 0 to 999. We have set these
ranges based on early experimental results.

Our experiments show that adjusting the values of param-
eters did not decrease or increase the translation error in a
linear or easily appreciable pattern. So, a simple hill climber
will probably not do well in finding optimized parameters.
We thus use a GA to optimize these parameters.

Algorithm 1 explains the combination of LIMO with the
GA, which uses a population size of 50 runs for 50 gener-
ations. We used ranking selection [41] to select the parents
for crossover and mutation. Rank selection probabilistically



Algorithm 1 GA-LIMO

1: Choose population of n chromosomes
2: Set the values of parameters into the chromosome
3: Run LIMO with the GA selected parameter values
4: for all chromosome values do
5: Run LIMO on KITTI odometry data set sequence 01
6: Compare LIMO estimated poses with ground truth
7: Translation error σ1 is found
8: Run LIMO on KITTI odometry data set sequence 04
9: Compare LIMO estimated poses with ground truth

10: Translation error σ4 is found
11: Average error σavg = σ1+σ4

2
12: return 1/σavg
13: end for
14: Perform Uniform Crossover
15: Perform Flip Mutation at rate 0.1
16: Repeat for required number of generations for optimal

solution

selects higher ranked (higher fitness) individuals. Unlike fit-
ness proportional selection, ranking selection pays attention
to the existence of a fitness difference rather than also to
the magnitude of fitness difference. Children are generated
using uniform crossover [42], which are then mutated using
flip mutation [25]. Chromosomes are binary encoded with
concatenated parameters. δ and µ are considered up to three
decimal places, which means a step size of 0.001, because
changes in values of parameters cause considerable change
in translation error. All the parameters require 11 bits to
represent their range of values, so we have a chromosome
length of 55 bits, with parameters arranged in the order: δ,
εnear, εmiddle, εfar, µ.

The algorithm starts with randomly generating a popula-
tion of n individuals. Each chromosome is sent to LIMO to
evaluate. LIMO evaluates the parameter set represented by
this individual by using those parameters to run on the KITTI
dataset [13]. The KITTI benchmarks are well known and
provide the most popular benchmark for Visual Odometry
and VSLAM. This dataset has rural, urban scenes along
with highway sequences and provides gray scale images,
color images, LIDAR point clouds and their calibration. Most
LIMO configurations are as in [7]. In our work, we focus on
two sequences in particular: sequence 01 and 04. Sequence
01 is a highway scenario, which is challenging because only
a road can be used for depth estimation. Sequence 04 is an
urban scenario, which has a large number of landmarks for
depth estimation. We consider both sequences for each GA
evaluation because we want a common set of parameters that
work well with multiple scenes.

The fitness of each chromosome is defined as the inverse
of translation error. This translates the minimization of
translation error into a maximization of fitness as required
for GA optimization. Since each fitness evaluation takes
significant time, an exhaustive search of the 255 size search
space in not possible, hence our using the GA. During a

fitness evaluation, the GA first runs the LIMO with sequence
01. It then compares the LIMO estimated poses with ground
truth (also found in [13]) and finds the translation error using
the official KITTI metric [13]. The same steps are followed
for sequence 04. The fitness value of each chromosome is
the average of the inverse translation errors from the two
sequences.

σavg =
σ1 + σ4

2
. (8)

Selected chromosomes (ranked selection) are then crossed
over and mutated to create new chromosomes to form the
next population. This starts the next GA iteration of evalu-
ation, selection, crossover, and mutation. The whole system
takes significant time since we are running 50 ∗ 50 = 2500
LIMO evaluations to determine the best parameters. The next
section shows our experiments with individual and combined
sequences, with and without the GA. Our results show that
the GA-LIMO performs better than the results of LIMO [7].

IV. EXPERIMENT AND RESULTS

In this section we show our experiments with individual
KITTI sequences, a combination of sequences, and overall
results. First, we run the GA-LIMO with sequences 01
and 04 separately. We show the translation error and the
error mapped onto trajectory, compared to the ground truth
(reference) [36]. We then, show our results when GA-LIMO
runs with evaluations on both sequences 01 and 04. Finally,
we compare the values of parameters found by GA-LIMO
versus LIMO.

Algorithm 2 GA-LIMO individual

1: Choose population of n chromosomes
2: Set the values of parameters into the chromosome
3: Run LIMO with the GA selected parameter values
4: for all chromosome values do
5: Run LIMO on individual KITTI odometry dataset

sequence
6: Compare LIMO estimated poses with ground truth
7: Translation error σ is found
8: return 1/σ
9: end for

10: Perform Uniform Crossover
11: Perform Flip Mutation at rate 0.1
12: Repeat for required number of generations to find opti-

mal solution

Figure 2 shows camera data while GA-LIMO is estimating
the pose from that data in figure 3. Figure 4 compares LIMO
performance with GA-LIMO on sequence 04. Here the GA
was run on this sequence individually to find the optimal
parameters, as in algorithm 2. Absolute Pose Error (APE) and
Root Mean Squared Error (RMSE) are one of the important
measures [43]. The translation error for each sequence is
the RMSE calculated with respect to ground truth. Figure
4a compares the translation error over the poses, while
figure 4b compares the error mapped onto the trajectory with



Fig. 2: Camera data while GA-LIMO is in action.

Fig. 3: GA-LIMO estimating the pose.

the zoomed in trajectory. Table I compares the values of
parameters for LIMO and GA-LIMO. Our results show that
the GA-LIMO trajectory is closer to ground truth compared
to LIMO. We found that the translation error was 0.56% with
GA-LIMO, in contrast to 1.01% with LIMO.

Parameters LIMO GA-LIMO

δ 0.95 0.986
εnear 400 999
εmiddle 400 960
εfar 400 859
µ 0.9 0.128

TABLE I: LIMO vs GA-LIMO values of parameters when
GA was run on LIMO with sequence 04 individually.

Figure 5 compares the performance of LIMO with GA-
LIMO when the system is run on just sequence 01. Here
first, the GA was run on sequence 01 (Algorithm 2) and the
optimal parameters were used to test the same sequence.
Table II compares the original and GA found parameter
values. Figure 5a compares translation error, while figure
5b shows the error mapped onto the trajectory for LIMO
and GA-LIMO. As shown in the zoomed in figure 5b, GA-
LIMO is closer to the ground truth. The translation error for
LIMO is found to be around 3.71% and 3.8% in case of GA-
LIMO, with sequence 01. GA found parameters that did not
out perform the original parameters, when GA-LIMO was
run on just sequence 01.

We finally ran the system with both sequences 01 and 04
as described in Algorithm 1. The fitness of each evaluation is
the average of translation errors of the sequences when run
using the input parameters. The parameters found in GA-
LIMO as shown in table III, were then tested on sequences

Parameters LIMO GA-LIMO

δ 0.95 0.958
εnear 400 999
εmiddle 400 593
εfar 400 877
µ 0.9 0.813

TABLE II: LIMO vs GA-LIMO values of parameters when
GA was run on LIMO with sequence 01 individually.

Parameters LIMO GA-LIMO

δ 0.95 0.963
εnear 400 999
εmiddle 400 554
εfar 400 992
µ 0.9 0.971

TABLE III: LIMO vs GA-LIMO values of parameters when
GA is run on LIMO with combined sequence 01 and 04.

sequences 00, 01 and 04, as shown in figure 6 and 7. It is
evident that GA-LIMO performed better than LIMO in all
three sequences. The zoomed in figures show a closer view
on one part of the trajectories. GA-LIMO trajectories are
closer to the ground truth and have lesser translation errors.
GA-LIMO has a translation error of 5.13% with sequence
00, 3.59% with sequence 01 and 0.65% with sequence 04, in
contrast with 5.77% with sequence 00, 3.71% with sequence
01 and 1.01% with sequence 04 using original parameters.

Our method helped to find common set of optimal parame-
ters which works better and hence lead to better performance
in different kinds of environments.



(a) Translation error comparison over the poses.

(b) Trajectory comparison for sequence 04, when GA-LIMO was
run on this sequence individually (algorithm 2).

Fig. 4: Results comparison for sequence 04 (algorithm 2).
LIMO has 1.01% translation error, while GA-LIMO has
about half this error with 0.56%.

V. DISCUSSION AND FUTURE WORK

This paper shows results that demonstrated that the ge-
netic algorithm can tune LIMO parameters to achieve better
performance, reduced translation error, across a range of
scenarios. We discussed existing work on VSLAM, presented
an algorithm to integrate LIMO with GA to find LIMO
parameters that robustly minimize translation error, and
explained why a GA might be suitable for such optimization.
Initial results had the assumption that GAs are a good fit for
such parameter optimization, and our results show that the
GA can find parameter values that lead to faster learning
and better (or equal) performance. We thus provide further
evidence that heuristic search as performed by genetic and
other similar evolutionary computing algorithms are a viable
computational tool for optimizing LIMO’s performance.

(a) Translation error comparison over the poses.

(b) Trajectory comparison.

Fig. 5: Results comparison for sequence 01 (algorithm 2).
LIMO has 3.71% translation error, while GA-LIMO has
3.8%.

APPENDIX

Open source code for this paper is available on
github: https://github.com/aralab-unr/LIMOWithGA. The
parameters used in this paper: outlier rejection quantile
δ; maximum number of landmarks for near bin εnear;
maximum number of landmarks for middle bin εmiddle;
maximum number of landmarks for far bin εfar; and
weight for the vegetation landmarks µ, corresponds to
outlier rejection quantile, max number landmarks near bin,
max number landmarks middle bin, max number land-
marks far bin, shrubbery weight, respectively in the code.

REFERENCES

[1] D. Cremers, “Direct methods for 3d reconstruction and visual slam,”
in 2017 Fifteenth IAPR International Conference on Machine Vision
Applications (MVA). IEEE, 2017, pp. 34–38.

[2] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision
and Applications, vol. 9, no. 1, p. 16, 2017.



(a) Translation error comparison over the poses for sequence 00.
LIMO has 5.77% translation error while GA-LIMO has 5.13%.

(b) Translation error comparison over the poses for sequence 01.
LIMO has 3.71% translation error while GA-LIMO has 3.59%.

(c) Translation error comparison over the poses for sequence 04.
LIMO has 1.01% translation error while GA-LIMO has 0.65%.

Fig. 6: The parameters are found using GA-LIMO using
combination of sequences 01 and 04 (Algorithm 1). These
parameters are then tested on three sequences. In all three
sequences GA-LIMO performs better than LIMO.

(a) Sequence 00 trajectories showing GA-LIMO closer to ground
truth.

(b) Sequence 01 trajectories showing GA-LIMO closer to ground
truth.

(c) Sequence 04 trajectories showing GA-LIMO closer to ground
truth.

Fig. 7: Trajectory comparison when GA-LIMO was run as
in Algorithm 1. In all three sequences GA-LIMO performs
better than LIMO.



[3] A. Singandhupe and H. La, “A review of slam techniques and security
in autonomous driving,” in IEEE International Conference on Robotic
Computing (IRC). Italy, 2019, pp. 602–607.

[4] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[5] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[6] M. Sons, H. Lategahn, C. G. Keller, and C. Stiller, “Multi trajectory
pose adjustment for life-long mapping,” in 2015 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2015, pp. 901–906.

[7] J. Graeter, A. Wilczynski, and M. Lauer, “Limo: Lidar-monocular
visual odometry,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7872–7879.

[8] M. Buczko and V. Willert, “Flow-decoupled normalized reprojection
error for visual odometry,” in 2016 IEEE 19th International Confer-
ence on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp.
1161–1167.

[9] I. Cvišić and I. Petrović, “Stereo odometry based on careful feature
selection and tracking,” in 2015 European Conference on Mobile
Robots (ECMR). IEEE, 2015, pp. 1–6.

[10] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[11] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-
tion in real-time,” in 2011 IEEE Intelligent Vehicles Symposium (IV).
Ieee, 2011, pp. 963–968.

[12] I. Cvišic, J. Cesic, I. Markovic, and I. Petrovic, “Soft-slam: Compu-
tationally efficient stereo visual slam for autonomous uavs,” Journal
of field robotics, 2017.

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[14] I. Krešo and S. Šegvic, “Improving the egomotion estimation by
correcting the calibration bias,” in 10th International Conference on
Computer Vision Theory and Applications, 2015.

[15] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automatic camera
and range sensor calibration using a single shot,” in 2012 IEEE
International Conference on Robotics and Automation. IEEE, 2012,
pp. 3936–3943.

[16] J. Gräter, T. Strauss, and M. Lauer, “Photometric laser scanner to
camera calibration for low resolution sensors,” in 2016 IEEE 19th In-
ternational Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2016, pp. 1552–1557.

[17] Y. Xu, P. Dong, J. Dong, and L. Qi, “Combining slam with muti-
spectral photometric stereo for real-time dense 3d reconstruction,”
arXiv preprint arXiv:1807.02294, 2018.

[18] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-
drift, robust, and fast,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 2174–2181.

[19] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular
camera localization in 3d lidar maps,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,
pp. 1926–1931.

[20] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, 2014, p. 9.

[21] J. Gräter, T. Schwarze, and M. Lauer, “Robust scale estimation for
monocular visual odometry using structure from motion and vanishing
points,” in 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2015, pp. 475–480.

[22] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of imu
and vision for absolute scale estimation in monocular slam,” Journal
of intelligent & robotic systems, vol. 61, no. 1-4, pp. 287–299, 2011.

[23] Y. Balazadegan Sarvrood, S. Hosseinyalamdary, and Y. Gao, “Visual-
lidar odometry aided by reduced imu,” ISPRS International Journal
of Geo-Information, vol. 5, no. 1, p. 3, 2016.

[24] J. H. Holland et al., Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992.

[25] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[26] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[27] S. Gibb, H. M. La, and S. Louis, “A genetic algorithm for convolu-

tional network structure optimization for concrete crack detection,” in
2018 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2018, pp. 1–8.

[28] A. Tavakkoli, A. Ambardekar, M. Nicolescu, and S. Louis, “A genetic
approach to training support vector data descriptors for background
modeling in video data,” in International Symposium on Visual Com-
puting. Springer, 2007, pp. 318–327.

[29] L. Davis, “Handbook of genetic algorithms,” 1991.
[30] D. Kalyanmoy, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and

elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions
on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[31] P. W. Poon and J. N. Carter, “Genetic algorithm crossover operators
for ordering applications,” Computers & Operations Research, vol. 22,
no. 1, pp. 135–147, 1995.

[32] T. Duckett et al., “A genetic algorithm for simultaneous localization
and mapping,” 2003.

[33] L. Moreno, J. M. Armingol, S. Garrido, A. De La Escalera, and
M. A. Salichs, “A genetic algorithm for mobile robot localization using
ultrasonic sensors,” Journal of Intelligent and Robotic Systems, vol. 34,
no. 2, pp. 135–154, 2002.

[34] H. M. La, T. H. Nguyen, C. H. Nguyen, and H. N. Nguyen, “Optimal
flocking control for a mobile sensor network based a moving target
tracking,” in 2009 IEEE International Conference on Systems, Man
and Cybernetics, Oct 2009, pp. 4801–4806.

[35] A. Sehgal, H. La, S. Louis, and H. Nguyen, “Deep reinforcement
learning using genetic algorithm for parameter optimization,” in IEEE
International Conference on Robotic Computing (IRC). Italy, 2019,
pp. 596–601.

[36] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[37] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp.
3213–3223.

[38] P. H. Torr and A. Zisserman, “Mlesac: A new robust estimator with
application to estimating image geometry,” Computer vision and image
understanding, vol. 78, no. 1, pp. 138–156, 2000.

[39] P. H. Torr and A. W. Fitzgibbon, “Invariant fitting of two view geom-
etry,” IEEE transactions on pattern analysis and machine intelligence,
vol. 26, no. 5, pp. 648–650, 2004.

[40] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-
imation by averaging,” SIAM Journal on Control and Optimization,
vol. 30, no. 4, pp. 838–855, 1992.

[41] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of genetic algo-
rithms. Elsevier, 1991, vol. 1, pp. 69–93.

[42] G. Syswerda, “Uniform crossover in genetic algorithms,” in Pro-
ceedings of the third international conference on Genetic algorithms.
Morgan Kaufmann Publishers, 1989, pp. 2–9.

[43] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 573–580.


	I INTRODUCTION and RELATED WORK
	II BACKGROUND
	II-A Feature extraction and pre-processing
	II-B Scale Estimation
	II-C Frame to Frame Odometry
	II-D Backend
	II-E Genetic Algorithm (GA)

	III GA-LIMO algorithm
	IV EXPERIMENT and RESULTS
	V DISCUSSION and FUTURE WORK
	References

