Skip to main content

Early Anomalous Vehicular Traffic Detection Through Spectral Techniques and Unsupervised Learning Models

  • Conference paper
  • First Online:
Book cover Advances in Soft Computing (MICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11835))

Included in the following conference series:

  • 1569 Accesses

Abstract

Smart Mobility seeks to meet urban requirements within a city and solve the urban mobility problems, one of them is related with vehicular traffic. The anomalous vehicular traffic is an unexpected change in the day-to-day vehicular traffic caused by different reasons, such as an accident, an event, road works or a natural disaster. An early detection of anomalous vehicular traffic allows to alert drivers of the anomaly and can make better decisions during their journey. The current solutions for this problem are mainly focused on the development of new algorithms, without giving enough importance to the extraction of underlying information from vehicular traffic, and even more, when this is a univariate time series and it is not possible to obtain other context features that describes its behavior. To address this issue, we propose a methodology for temporary, spectral and aggregation features and an unsupervised learning model to detect anomalous vehicular traffic. The methodology was evaluated in a real vehicular traffic database. Experimental results show that by using spectral attributes the detection of anomalous vehicular traffic, the Isolation Forest obtains the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://drive.google.com/drive/folders/1Noqgm1PXNg-qmjuP0GQtnkV918JWIKMq?usp=sharing.

References

  1. Aggarwal, C.: Outlier analysis. In: Aggarwal, C.C. (ed.) Data Mining, pp. 237–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8_8

    Chapter  Google Scholar 

  2. Antoniou, A.: Digital Signal Processing. McGraw-Hill, New York (2016)

    Google Scholar 

  3. Babaei, P.: Vehicles behavior analysis for abnormality detection by multi-view monitoring. Int. Res. J. Appl. Basic Sci. 9(11), 1929–1936 (2015)

    Google Scholar 

  4. Benevolo, C., Dameri, R.P., D’Auria, B.: Smart mobility in smart city. In: Torre, T., Braccini, A.M., Spinelli, R. (eds.) Empowering Organizations. LNISO, vol. 11, pp. 13–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23784-8_2

    Chapter  Google Scholar 

  5. Benjamini, Y., Yekutieli, D., et al.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MathSciNet  Google Scholar 

  6. Breunig, M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  7. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh-a Python package). Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  8. D’Andrea, E., Ducange, P., Lazzerini, B., Marcelloni, F.: Real-time detection of traffic from twitter stream analysis. IEEE Trans. Intell. Transp. Syst. 16(4), 2269–2283 (2015)

    Article  Google Scholar 

  9. Debnath, L.: Wavelets and Signal Processing. Springer, New York (2012)

    MATH  Google Scholar 

  10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Farooq, M., Khan, N., Ali, M.: Unsupervised video surveillance for anomaly detection of street traffic. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 8, 270–275 (2017)

    Google Scholar 

  12. Garcia, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9(Dec), 2677–2694 (2008)

    MATH  Google Scholar 

  13. Hutchins, J.: Dodgers loop sensor dataset. UCI Machine Learning Repository (2006)

    Google Scholar 

  14. Jawad, A., Kersting, K., Andrienko, N.: Where traffic meets DNA: mobility mining using biological sequence analysis revisited, pp. 357–360 (2011)

    Google Scholar 

  15. Kang, H.: The prevention and handling of the missing data. Korean J. Anesthesiol. 64(5), 402 (2013)

    Article  Google Scholar 

  16. Kuang, W., An, S., Jiang, H.: Detecting traffic anomalies in urban areas using taxi GPS data. Math. Probl. Eng. 2015, 13 (2015)

    Article  Google Scholar 

  17. Liu, F., Ting, K., Zhou, Z.H.: Isolation forest, pp. 413–422 (2008)

    Google Scholar 

  18. Moritz, S., Sardá, A., Bartz-Beielstein, T., Zaefferer, M., Stork, J.: Comparison of different methods for univariate time series imputation in R. arXiv preprint arXiv:1510.03924 (2015)

  19. Moustaka, V., Vakali, A., Anthopoulos, L.G.: A systematic review for smart city data analytics. ACM Comput. Surv. 51(5), 103:1–103:41 (2018)

    Article  Google Scholar 

  20. Parks, T., Burrus, C.: Digital Filter Design. Topics in Digital Signal Processing. Wiley, New York (1987)

    MATH  Google Scholar 

  21. Proakis, J.: Digital Signal Processing: Principles Algorithms and Applications. Pearson Education India (2001)

    Google Scholar 

  22. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  23. Singh, D., Mohan, C.K.: Deep spatio-temporal representation for detection of road accidents using stacked autoencoder. IEEE Trans. Intell. Transp. Syst. 20(3), 879–887 (2019)

    Article  MathSciNet  Google Scholar 

  24. Zameni, M., et al.: Urban sensing for anomalous event detection: In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 553–568. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_34

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Carlos Vazquez-Nava , Miguel Gonzalez-Mendoza , Oscar Herrera-Alacantara or Neil Hernandez-Gress .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vazquez-Nava, R.C., Gonzalez-Mendoza, M., Herrera-Alacantara, O., Hernandez-Gress, N. (2019). Early Anomalous Vehicular Traffic Detection Through Spectral Techniques and Unsupervised Learning Models. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics