Skip to main content

The CURE for Class Imbalance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Abstract

Addressing the class imbalance problem is critical for several real world applications. The application of pre-processing methods is a popular way of dealing with this problem. These solutions increase the rare class examples and/or decrease the normal class cases. However, these procedures typically only take into account the characteristics of each individual class. This segmented view of the data can have a negative impact. We propose a new method that uses an integrated view of the data classes to generate new examples and remove cases. ClUstered REsampling (CURE) is a method based on a holistic view of the data that uses hierarchical clustering and a new distance measure to guide the sampling procedure. Clusters generated in this way take into account the structure of the data. This enables CURE to avoid common mistakes made by other resampling methods. In particular, CURE prevents the generation of synthetic examples in dangerous regions and undersamples safe, non-borderline, regions of the majority class. We show the effectiveness of CURE in an extensive set of experiments with benchmark domains. We also show that CURE is a user-friendly method that does not require extensive fine-tuning of hyper-parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is a hand curated 2-dimensional data set developed to demonstrate the strengths of CURE.

References

  1. Alcalá-Fdez, J., et al.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17, 255–287 (2011)

    Google Scholar 

  2. Barua, S., Islam, M.M., Murase, K.: A novel synthetic minority oversampling technique for imbalanced data set learning. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7063, pp. 735–744. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24958-7_85

    Chapter  Google Scholar 

  3. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  4. Bellinger, C., Drummond, C., Japkowicz, N.: Manifold-based synthetic oversampling with manifold conformance estimation. Mach. Learn. 107(3), 605–637 (2018)

    Article  MathSciNet  Google Scholar 

  5. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. (CSUR) 49(2), 31 (2016)

    Article  Google Scholar 

  6. Branco, P., Torgo, L., Ribeiro, R.P.: Resampling with neighbourhood bias on imbalanced domains. Expert Syst. 35(4), e12311 (2018). https://doi.org/10.1111/exsy.12311

    Article  Google Scholar 

  7. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 475–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_43

    Chapter  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  10. Estabrooks, A., Japkowicz, N.: A mixture-of-experts framework for learning from imbalanced data sets. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 34–43. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_4

    Chapter  MATH  Google Scholar 

  11. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)

    Article  MathSciNet  Google Scholar 

  12. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  13. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IJCNN 2008, pp. 1322–1328. IEEE (2008)

    Google Scholar 

  14. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley, Hoboken (2013)

    Book  Google Scholar 

  15. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD Explor. Newslett. 6(1), 40–49 (2004). Special issue on learning from imbalanced datasets

    Article  Google Scholar 

  16. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, Nashville, USA, vol. 97, pp. 179–186 (1997)

    Google Scholar 

  17. Lewis, D.D., Catlett, J., Hill, M.: Heterogeneous uncertainty sampling for supervised learning. In: International Conference on Machine Learning, pp. 148–156 (1994)

    Chapter  Google Scholar 

  18. Lim, P., Goh, C.K., Tan, K.C.: Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning. IEEE Trans. Cybern. 47(9), 2850–2861 (2017)

    Article  Google Scholar 

  19. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409–410, 17–26 (2017)

    Article  Google Scholar 

  20. Nickerson, A.S., Japkowicz, N., Milios, E.: Using unsupervised learning to guide resampling in imbalanced data sets. In: Proceedings of the Eighth International Workshop on AI and Statistics, p. 5 (2001)

    Google Scholar 

  21. Oliveira, M., Torgo, L., Santos Costa, V.: Predicting wildfires. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 183–197. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_12

    Chapter  Google Scholar 

  22. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42(3), 203–231 (2001)

    Article  Google Scholar 

  23. Rijsbergen, C.V.: Information retrieval, 2nd edition. Department of computer science, University of Glasgow (1979)

    Google Scholar 

  24. Slama, R., Wannous, H., Daoudi, M., Srivastava, A.: Accurate 3D action recognition using learning on the grassmann manifold. Pattern Recogn. 48(2), 556–567 (2015)

    Article  Google Scholar 

  25. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  26. Weiss, G.M.: Mining with rarity: a unifying framework. SIGKDD Explor. Newsl. 6(1), 7–19 (2004). https://doi.org/10.1145/1007730.1007734

    Article  Google Scholar 

  27. Williams, D., Myers, V., Silvious, M.: Mine classification with imbalanced data. IEEE Geosci. Remote Sens. Lett. 6(3), 528–532 (2009)

    Article  Google Scholar 

  28. Wu, J., Xiong, H., Chen, J.: COG: local decomposition for rare class analysis. Data Min. Knowl. Discov. 20(2), 191–220 (2010)

    Article  MathSciNet  Google Scholar 

  29. Yang, Q., et al.: 10 challenging problems in data mining research. Int. J. Inf. Tech. Decis. 5(4), 597–604 (2006)

    Article  Google Scholar 

  30. Yen, S.J., Lee, Y.S.: Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36(3), 5718–5727 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Bellinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellinger, C., Branco, P., Torgo, L. (2019). The CURE for Class Imbalance. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics