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Abstract. Classical statistical models for time series forecasting most
often make a number of assumptions about the data at hand, there-
with, requiring intensive manual preprocessing steps prior to modeling.
As a consequence, it is very challenging to come up with a more generic
forecasting framework. Extensive hyperparameter optimization and en-
semble architectures are common strategies to tackle this problem, how-
ever, this comes at the cost of high computational complexity. Instead
of optimizing hyperparameters by training multiple models, we propose
a method to estimate optimal hyperparameters directly from the char-
acteristics of the time series at hand. To that end, we use Convolutional
Neural Networks (CNNs) for time series forecasting and determine a part
of the network layout based on the time series’ Fourier coefficients. Our
approach significantly reduces the amount of required model configura-
tion time and shows competitive performance on time series data across
various domains. A comparison to popular, state of the art forecasting
algorithms reveals further improvements in runtime and practicability.
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1 Introduction

In the age of connected sensors, devices, and services, temporal data is one
of the most widespread data types these days. Designing accurate forecasting
models typically involves lots of manual work, e.g. data preprocessing, parameter
tuning, and model selection. Since time series data comes in different shapes and
distributions, these manual steps are usually required for each new dataset.

In this work, we propose a time series forecasting framework based on CNNs
that makes no prior assumptions about data distribution and integrates all re-
quired preprocessing steps. We demonstrate its predictive power on thirty data
series, where the approach outperforms all baselines in two-thirds of the cases
without the need to manually adapt any parameter across the different datasets.
In addition to this, we show significant improvements in runtime of the training
process, therewith, providing a very convenient forecasting method that is fast
and robust.
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Our approach combines the predictive power of CNNs with the time series
decomposition capabilities of Fourier analysis. Hyperparameter tuning is ex-
pensive, because it requires training multiple models. In this paper, we follow a
different approach and configure a neural network analytically. Our idea is based
on the assumption that the characteristics of a time series — more specifically:
its Fourier decomposition — can be used to determine a suitable network layout
for a CNN. Hence, we exploit the inherent structure of time series data in order
to parametrize the CNN used for forecasting.

Section 2 starts with existing approaches to time series forecasting, discussing
their assumptions and strengths. In Section 3, we provide a detailed explanation
of our contribution and its motivation. These ideas are applied to numerous
real world datasets in Section 4, demonstrating advantages and limitations. We
conclude and discuss future work in Section 5.

2 Related Work and Time Series Fundamentals

Due to the diverse occurrence of time series data in applications and databases,
its analysis has been an active research field for decades. Temporal data has the
interesting property that the current value is dependent on a number of past
values. In other words, observations are not independent of each other but can
be thought of as a function of their past values.

2.1 Autoregression and Smoothing

Autoregressive (AR) models are amongst the most popular approaches for time
series analysis and forecasting. AR models approximate a time series with a linear
combination of the most recent past values and their errors [4]. These models
perform particularly well if the assumption is met that the series is generated
by a linear process [1], however, this barely holds in practice.

Exponential Smoothing constitutes another relatively simple yet popular ap-
proach to forecasting. Here, the series is smoothed by applying an exponential
window function. This implies the assignment of weights which decrease over
time.

2.2 Machine Learning

Forecasting as a Supervised Regression Problem. An advantageous prop-
erty of historical time series data is that transforming it to a supervised machine
learning task is easy. Past observations serve as explanatory features to the
respective future values that constitute the target variables. Unlike other super-
vised learning tasks (e.g. image recognition), time series data can be automati-
cally transformed to a supervised problem without the need for manual annota-
tion. This aspect is critical for the success of end-to-end forecasting frameworks
such as the one presented in this paper.
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Handled this way, the forecasting task follows the same process as any other
supervised machine learning challenge, i.e., hyperparameter optimization, eval-
uation, and model selection. This idea is also implemented in [23] in order to
train the base models required for ensemble learning.
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Fig. 1. Transforming raw, univariate time series data to a supervised learning task

There are two common strategies of how to design a machine learning system
for multi-step time series forecasting, known as the direct and indirect methods.
Assuming a forecasting horizon h > 1, one can either train a dedicated model
for each future point 1,2, ..., h (direct method), or only train a single model and
use its forecast as input for the succeeding future point in an iterated fashion
(indirect method). Since the direct approach requires the training of h individual
models it scales very poorly for longer horizons, leading to a low practicability
for actual applications. It was also shown that the performance is inferior to that
of the indirect method for AR models [9].

Artificial Neural Networks. [11] showed that an ANN with one hidden layer
is able to approximate a continuous function arbitrarily well, which makes ANNs
highly interesting for regression problems. The spike in popularity of ANNs
within the past decade led to significant developments for time series analysis,
especially with regard to recurrent neural networks (RNNs). As these models
usually make no prior assumptions about data distribution, they have a ma-
jor advantage over more classical time series models described in the previous
section. Intuitively speaking, RNNs can be thought of as standard feed for-
ward networks with loops in them. This sequential architecture enabled RNNs
to achieve new state of the art results on a variety of sequential tasks such as
machine translation [5] [20] and time series forecasting [3] [14] [17]. Nevertheless,
RNNSs tend to suffer from vanishing or exploding gradients in case of very long-
term dependencies in the data [2] [18]. Long short-term memory (LSTM) cells
overcome this problem by the introduction of a gating mechanism that regulates
the information flow of the network [10]. This allows for more reliable modeling
of long-term dependencies, leading to a wide adoption of LSTMs for sequential
tasks.

Due to the sequential nature of RNNs, parallelization possibilities are limited
and training these models is computationally expensive. As a consequence, the
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application of convolutional neural networks (CNNs) to sequential problems has
been a very active field of study. CNNs rely on filtering mechanisms in order to
generate meaningful meta-features out of the raw input data. While primarily
used to analyze visual imagery [27] and audio [26], the application of CNNs to
sequential regression problems has shown competitive prediction performance at
significantly lower computational complexity [7].

2.3 Ensembles

An essential requirement for ensemble methods to be effective is that the base
learners are heterogeneous and make different errors at prediction time. [22]
presents strategies on diversity generation for ensemble models. [23] combines
several heterogeneous machine learning base models that are arbitrated by a
meta-learner to generate the final forecasts. [12] [13] make use of local minima
in the LSTM training process by storing model snapshots every time the LSTM
converges to a local minimum. While ensemble models boost predictive perfor-
mance, training of multiple base learners leads to high computational costs.

3 Forecasting with CNNs

The general procedure to train a CNN forecasting model follows the steps re-
quired for any regression problem, where the lags of the input series serve as
features and the respective future values as targets. Fig. 1 depicts the splitting
logic in the data preprocessing stage. The forecasting horizon h is usually a given
parameter that is defined by the problem at hand. More importantly, the num-
ber of past lags to include as features must be large enough in order to account
for long-term relationships across the series.

3.1 A CNN Algorithm for Multi-Step Forecasting

While CNNs are best known for their powerful capabilities within the area of
image recognition, they are also widely used for more traditional regression prob-
lems. Hence, their structure allows the application to autoregressive tasks such
as time series forecasting. Contrary to RNNs, however, CNNs are not naturally
built for sequence processing. In order to generate sequence forecasts despite
its architecture, we apply the indirect forecasting method, following the logic
described before.

3.2 Enhancing Parameter Optimization with Fourier Analysis

The major challenge when dealing with ANNSs is hyperparameter optimization.
As this is a data specific task, a robust forecasting framework greatly benefits
from efficient parameter optimization.

For the special case of time series data, we make use of its inherent structure
in order to enhance CNN parametrization. Since one of the key tasks of time
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series models is to correctly identify repeating patterns over time, it is essential
to parametrize models in a way that enables them to determine these structures.

Fourier analysis is a powerful and efficient tool that solves the problem of
determining autocorrelations [19]. We apply the fast Fourier transform (FFT)
[21] to the training data and use the decomposition of the series to extract the
strongest autocorrelations. As these frequencies determine the respective sizes
of the strongest patterns, we can configure the convolutional layers so that they
match those pattern lengths. Therefore, the CNN is directly tailored towards the
patterns that dominate the time series under study. More precisely, the proposed
method follows these steps to get from data input to forecasting:

1. z-standardize and transform the input data according to Fig. 1

2. Determine Fourier coefficients and top-2 autocorrelations

3. Define a 2-layer CNN and set the lengths of the convolution windows ac-
cording to the top periodicities inferred from the Fourier coefficients. The
CNN uses 96 filters, 50 past lags, a batch size of 16, a dropout rate of 20%, a
learning rate of 10~%, the Adam [8] optimizer, 100 epochs and mean squared
error as loss function.

4. Train CNN and evaluate performance on the test set

4 Experimental Analysis

4.1 Baseline Models and Evaluation

In order to validate the performance of the proposed algorithm, we perform
forecasting experiments on 30 real world datasets.

Methods. The 10-steps ahead forecasting accuracy, measured in terms of root
mean squared error (RMSE), is compared to the following baseline methods (cf.
Chapter 2 for details):

— ARIMA, where model selection is based on a parameter grid opting for the
AIC (p=1,2,3,¢=1,2,3,d=1,2)

— Exponential Smoothing (ES)

— Arbitrated ensembles (ArbEns) specified in [23]

— Fourier: continuing reconstructed Fourier signals to generate forecasts

— CONNs parametrized with common filter length selections {2, 8} opposed to

Fourier based parameter estimation (CNN-Std.)

Standard 2-layer LSTM architecture as described in [13] (LSTM-Std.)

LSTM with the same architecture as the previous one, trained using the

Snapshot Ensemble approach from [13] (LSTM-Snap)

— Our proposed method, combining CNNs and Fourier analysis (CNN-Fou)

An implementation, written mostly in Python, is available on GitHub! . For
arbitrated ensembles, the tsensembler library written in R is used since the
authors released it in that language.

! https://github.com/saschakrs/CNN-Fou, accessed April 6, 2019
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Data. The datasets listed in Table 1 are used for model training and validation.
These time series originate from various domains such as air quality measure-
ments and energy loadings. We also report the frequencies, mean values and
standard deviations for each series. Furthermore, the length of each series is
normalized such that all datasets have between 2.974 and 2.995 observations,
making the results comparable.

In this analysis, we focus on the univariate case, i.e., forecasting the target
variable based on its own past values. Prior to modeling, all data is standardized
according to a z-transformation, i.e., Y = % Note that mean p and standard
deviation o are determined based on only the training set as the holdout data
points are unknown in a real scenario. For each approach and dataset, the most
recent 10% of the series are used as test data in a windowing fashion. Every model
is evaluated based on its ability to provide accurate 10-step ahead forecasts.

Evaluation. The results are summarized in Table 2. For each method and
dataset we report the forecast RMSE for the 10% holdout data sample.

In addition, we provide the runtimes for model training in Fig. 4.2. The neural
networks were trained on a NVIDIA Tesla K80 GPU and an Intel i7-6820HQ
CPU was used for all other models as these don’t profit from GPU usage.

The key value of our method lies in its robustness across different datasets
without the need to manually incorporate domain knowledge. This implies that
we leave all training architectures and parameters constant for each series (except
for the Fourier coefficients that are learned for each dataset). Therefore, the
proposed method constitutes a framework for automated end-to-end time series
forecasting that does not require additional, manual processing steps prior to
modeling and forecasting.

4.2 Results

The results in Table 2 show that the proposed approach yields superior per-
formance in 20 of 30 cases. We apply the Diebold-Mariano test [15] in order
to evaluate whether the top performing model has a significantly different fore-
casting accuracy than the next best method. The null hypothesis states that
the forecasting accuracy of the two methods are not different. One star (*) or
two stars (**) indicate a p-value of less than 0.05 or 0.01, respectively. We can
observe that:

— In two-thirds of all cases, the Fourier-integrated CNN is superior or equal to
all baseline methods with an average performance gain of 10.25% compared
to the next best method (Snapshot Ensembles).

— Traditional models such as ARIMA, exponential smoothing and simple Fourier
forecasting show poor performance compared to advanced methods.

— In terms of runtime, modern CNN implementations benefit heavily from
strong parallelization on GPUs. Here, LSTMs suffer from their sequential
nature that makes them harder to train efficiently. Compared to the training
of LSTMs, CNNs are faster by a factor of 4.
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Table 1. Overview of Datasets

i Domain Frequency I o
1 Water consumption indicators in Porto [23] 30 min 1.75 1.38
2 Water consumption indicators in Porto 30 min 1079.03 271.90
3 Water consumption indicators in Porto 30 min 10.08 7.03
4 Solar radiation [23]  hour 930.72 289.03
5 Solar radiation hour 112.46 86.14
6 Solar radiation hour 912.74 279.47
7 Solar radiation  hour 84.25 45.84
8 Various air quality measurements [25]  hour 1593.23  366.28
9 Various air quality measurements hour 948.45 380.95
10 Various air quality measurements hour 20.29 7.89
11 Various air quality measurements hour 43.41 17.38
12 Various air quality measurements hour 1.00 0.30
13 Various air quality measurements hour 15.96 44.31
14 Various air quality measurements hour 27.82 35.80
15 Various air quality measurements hour 202.37 287.44
16 Various air quality measurements hour 84.96 122.25
17 Various air quality measurements hour 72.77 105.03
18 Various air quality measurements hour 58.06 29.89
19 Various air quality measurements hour 40.35 16.90
20 Various air quality measurements hour 33.42 18.81
21 Energy loads such as electricity or gas [23]  hour 1.67 0.74
22 Energy loads such as electricity or gas  hour 67.83 153.33
23 Energy loads such as electricity or gas hour 2.15 0.46
24 Energy loads such as electricity or gas  hour 256.11 40.23
25 Energy loads such as electricity or gas  hour 1021.64  203.35
26 Exchange rates [24]  day 208.32 82.10
27 Rainfall in Melbourne [24] day 522.93 87.65
28 Mean river flow [24]  day 456.74 105.85
29 Number of births in Quebec [24]  day 23.01 10.68
30 Mean wave height [24]  hour 4.49 3.16

— While arbitrated ensembles are amongst the top performers for each dataset,
they are computationally expensive since a number of base learners must be
trained in order for ensembles to be effective.

— Result significance differs depending on the dataset. This is due to varying
problem complexity between datasets.

5 Conclusions

We presented an end-to-end time series forecasting framework based on CNNs
and Fourier analysis which is more computationally efficient and accurate than
existing approaches. We made use of the natural structure of time series data
in order to capture repeating patterns effectively. It was shown that Fourier
analysis can be used to enhance CNN parametrization and improve forecasting
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Table 2. RMSE for 30 different datasets, 10-steps ahead forecasting

i ARIMA ES ArbEns Fourier CNN-Std. LSTM-Std. LSTM-Snap CNN-Fou
1 0.60 1.12 0.50 1.04 0.51 0.88 0.51 0.38%*
2 0.65 0.93 0.37 0.99 0.52 0.45 0.21%* 0.25
3 0.69 1.22 0.51 1.15 0.54 0.67 0.41 0.39*
4 0.60 1.09 0.43 1.09 0.41 0.53 0.36 0.31%*
5 0.86 1.45 0.53** 1.54 0.95 0.74 0.58 0.59
6 0.47 0.89 0.42 0.93 0.40 0.59 0.30 0.30
7 0.77 1.48 0.57 1.11 0.67 0.81 0.47 0.45
8 0.54 1.17 0.42 0.71 0.45 0.57 0.48 0.30%*
9 0.95 1.90 0.67 1.34 0.40** 0.77 0.55 0.55
10 0.51 0.83 0.27 0.52 0.38 0.31 0.30 0.27
11 0.39 0.83 0.33 0.46 0.25 0.41 0.37 0.21%*
12 0.73 1.34 0.62 1.35 0.48%* 0.91 0.56 0.50
13 1.29 1.29 1.31 1.59 1.08 1.66 1.01%* 1.19
14 0.56 0.41 0.29 0.69 0.29 0.37 0.28 0.27
15 0.46 1.87 0.40 0.50 0.56 0.42 0.45 0.40*
16 0.65 1.04 0.65 0.81 0.78 0.94 0.46** 0.53
17 0.63 1.01 0.63 1.09 0.72 1.13 0.50%* 0.51
18 0.74 1.16 0.27 1.37 0.40 0.30 0.31 0.26%*
19 0.94 1.06 0.44 1.41 0.51 0.69 0.43 0.32%*
20 0.86 0.86 0.71 1.19 0.86 0.86 0.42%* 0.59
21 1.16 1.33 0.49 1.45 0.51 0.55 0.42 0.37%*
22 0.11 0.02 0.03 0.12 0.03 0.05 0.03 0.03
23 1.05 0.27 0.07 1.46 0.06 0.13 0.06 0.05
24 0.76 1.16 0.57 1.19 0.37 0.78 0.44 0.45
25 0.74 1.06 0.23 0.90 0.34 0.38 0.21 0.18%*
26 0.55 1.01 0.27 0.79 0.38 0.30 0.19 0.15*
27 0.52 1.59 0.37 0.63 0.44 0.51 0.26 0.25
28 0.39 1.69 0.34 0.59 0.44 0.43 0.22 0.22
29 0.52 1.06 0.44 0.70 0.23%* 0.80 0.33 0.32
30 0.72 0.61 0.63 1.19 0.62 0.91 0.73 0.55%*
Avg 0.68 1.09 0.46 1.00 0.49 0.63 0.40 0.37

performance without the need to adapt the setup for new datasets. The method
was compared to various state of the art forecasting methods and generated the
most accurate results in the majority of thirty use cases.

While this work focused on the univariate case, its extension to the multi-
variate scenario will be part of our future research. The basic methodology will
be the same, however, the additional amount of features requires more efficient
preprocessing and modeling strategies. Apart from that, it is worth investigating
the effects when scaling the framework to larger datasets, especially in terms of
CNN architecture.



Fourier-based Parametrization of CNNs for Robust Time Series Forecasting 9

N
[0,
1

I__l

Runtime in minutes
=
ul
1

10 A
I ==
5 -
o T T T T T T T T
s & g g 2 = & 3
E: £ -
< < [ = E s 2
O 0 [ O
| n
-
Fig. 2. Average model runtime across 30 datasets
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