
On the Trade-off Between Consistency and
Coverage in Multi-label Rule Learning Heuristics

Preprint version. To appear in Proceedings of the 22nd International
Conference on Discovery Science, 2019

Michael Rapp, Eneldo Loza Menćıa, and Johannes Fürnkranz
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Abstract. Recently, several authors have advocated the use of rule
learning algorithms to model multi-label data, as rules are interpretable
and can be comprehended, analyzed, or qualitatively evaluated by do-
main experts. Many rule learning algorithms employ a heuristic-guided
search for rules that model regularities contained in the training data
and it is commonly accepted that the choice of the heuristic has a sig-
nificant impact on the predictive performance of the learner. Whereas
the properties of rule learning heuristics have been studied in the realm
of single-label classification, there is no such work taking into account
the particularities of multi-label classification. This is surprising, as the
quality of multi-label predictions is usually assessed in terms of a variety
of different, potentially competing, performance measures that cannot all
be optimized by a single learner at the same time. In this work, we show
empirically that it is crucial to trade off the consistency and coverage
of rules differently, depending on which multi-label measure should be
optimized by a model. Based on these findings, we emphasize the need
for configurable learners that can flexibly use different heuristics. As our
experiments reveal, the choice of the heuristic is not straight-forward,
because a search for rules that optimize a measure locally does usually
not result in a model that maximizes that measure globally.

Keywords: Multi-label classification · Rule learning · Heuristics

1 Introduction

As many real-world classification problems require to assign more than one label
to an instance, multi-label classification (MLC) has become a well-established
topic in the machine learning community. There are various applications of MLC
such as text categorization [16, 18], the annotation of images [4, 19] and music
[25,27], as well as use cases in bioinformatics [8] and medicine [21].

Rule learning algorithms are a well-researched approach to solve classification
problems [13]. In comparison to complex statistical methods, like for example
support vector machines or artificial neural networks, their main advantage is
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the interpretability of the resulting models. Rule-based models can easily be
understood by humans and form a structured hypothesis space that can be an-
alyzed and modified by domain experts. Ideally, rule-based approaches are able
to yield insight into the application domain by revealing patterns and regular-
ities hidden in the data and allow to reason why individual predictions have
been made by a system. This is especially relevant in safety-critical domains,
such as medicine, power systems, or financial markets, where malfunctions and
unexpected behavior may entail the risk of health damage or financial harm.

Motivation and goals. To assess the quality of multi-label predictions in
terms of a single score, several commonly used performance measures exist. Even
though some of them originate from measures used in binary or multi-class clas-
sification, different ways to aggregate and average the predictions for individual
labels and instances — most prominently micro- and macro-averaging — exist
in MLC. Some measures like subset accuracy are even unique to the multi-label
setting. No studies that investigate the effects of using different rule learning
heuristics in MLC and discuss how they affect different multi-label performance
measures have been published so far.

In accordance with previous publications in single-label classification, we ar-
gue that all common rule learning heuristics basically trade off between two as-
pects, consistency and coverage [12]. Our long-term goal is to better understand
how these two aspects should be weighed to assess the quality of candidate rules
during training if one is interested in a model that optimizes a certain multi-label
performance measure. As a first step towards this goal, we present a method for
flexibly creating rule-based models that are built with respect to certain heuris-
tics. Using this method, we empirically analyze how different heuristics affect the
models in terms of predictive performance and model characteristics. We demon-
strate how models that aim to optimize a given multi-label performance measure
can deliberately be trained by choosing a suitable heuristic. By comparing our
results to a state-of-the-art rule learner, we emphasize the need for configurable
approaches that can flexibly be tailored to different multi-label measures. Due
to space limitations, we restrict ourselves to micro-averaged measures, as well as
to Hamming and subset accuracy.

Structure of this work. We start in Section 2 by giving a formal definition of
multi-label classification tasks as well as an overview of inductive rule learning
and the rule evaluation measures that are relevant to this work. Based on these
foundations, in Section 3, we discuss our approach for flexibly creating rule-
based classifiers that are built with respect to said measures. In Section 4, we
present the results of the empirical study we have conducted, before we provide
an overview of related work in Section 5. Finally, we conclude in Section 6 by
recapitulating our results and giving an outlook on planned future work.
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2 Preliminaries

MLC is a supervised learning problem in which the task is to associate an in-
stance with one or several labels λi out of a finite label space L = {λ1, . . . , λn},
with n = |L| being the total number of predefined labels. An individual in-
stance xj is represented in attribute-value form, i.e., it consists of a vector
xj = (v1, . . . , vl) ∈ D = A1 × · · · × Al, where Ai is a numeric or nominal
attribute. Additionally, each instance xj is associated with a binary label vector
yj = (y1, . . . , yn) = {0, 1}n, where yi indicates the presence (1) or absence (0) of
label λi. Consequently, the training data set of a MLC problem can be defined
as a set of tuples T = {(x1,y1) , . . . , (xm,ym)}, with m = |T | being the num-
ber of available training instances. The classifier function g (.), that is deduced
from a given training data set, maps an instance x to a predicted label vector
ŷ = (ŷ1, . . . , ŷn) = {0, 1}n.

2.1 Classification rules

In this work, we are concerned with the induction of conjunctive, propositional
rules r : H ← B. The body B of such a rule consists of one or several conditions
that compare an attribute-value vi of an instance to a constant by using a rela-
tional operator such as = (in case of nominal attributes), or < and ≥ (in case of
numerical attributes). On the one hand, the body of a conjunctive rule can be
viewed as a predicate B : x → {true, false} that states whether an instance x
satisfies all of the given conditions, i.e., whether the instance is covered by the
rule or not. On the other hand, the head H of a (single-label head) rule consists
of a single label assignment (ŷi = 0 or ŷi = 1) that specifies whether the label
λi should be predicted as present (1) or absent (0).

2.2 Binary relevance method

In the present work, we use the binary relevance transformation method (cf. [4]),
which reduces MLC to binary classification by treating each label λi ∈ L of a
MLC problem independently. For each label λi, we aim at learning rules that
predict the minority class ti ∈ {0, 1}, i.e., rules that contain the label assignment
ŷi = ti in their head. We define ti = 1, if the corresponding label λi is associated
with less than 50% of the training instances, or ti = 0 otherwise.

A rule-based classifier — also referred to as a theory — combines several
rules into a single model. In this work, we use (unordered) rule sets containing
all rules that have been induced for the individual labels. Such a rule set can
be considered as a disjunction of conjunctive rules (DNF). At prediction time,
all rules that cover a given instance are taken into account to determine the
predicted label vector ŷ. An individual element ŷi ∈ ŷ, that corresponds to
the label λi, is set to the minority class ti if at least one of the covering rules
contains the label assignment ŷi = ti in its head. Otherwise, the element is set
to the majority class 1 − ti. As all rules that have been induced for a label λi
have the same head, no conflicts may arise in the process.
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2.3 Bipartition evaluation functions
To assess the quality of individual rules, usually bipartition evaluation functions
δ : N2×2 → R are used [26]. Such functions — also called heuristics — map
a two-dimensional confusion matrix to a heuristic value h ∈ [0, 1]. A confusion
matrix consists of the number of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) labels that are predicted by a rule. We
calculate the example-wise aggregated confusion matrix Cr for a rule r : ŷi ← B
as

Cr :=
(

TP FP
FN TN

)
= C1

i ⊕ · · · ⊕ C
j
i ⊕ · · · ⊕ C

m
i (1)

where ⊕ denotes the cell-wise addition of atomic confusion matrices Cji that
correspond to label λi and instance xj .

Further, let yji and ŷji denote the absence (0) or presence (1) of label λi for an
instance yj according to the ground truth and a rule’s prediction, respectively.
Based on these variables, we calculate the elements of Cji as

TPji = Jyji = ti ∧ ŷji = tiK FPji = Jyji 6= ti ∧ ŷji = tiK
FNj

i = Jyji = ti ∧ ŷji 6= tiK TNj
i = Jyji 6= ti ∧ ŷji 6= tiK

(2)

where JxK = 1, if x is true, 0 otherwise.

2.4 Rule learning heuristics
A good rule learning heuristic should (among other aspects) take both, the
consistency and coverage of a rule, into account [13,15]. On the one hand, rules
should be consistent, i.e., their prediction should be correct for as many of the
covered instances as possible. On the other hand, rules with great coverage, i.e.,
rules that cover a large number of instances, tend to be more reliable, even
though they may be less consistent.

The precision metric exclusively focuses on the consistency of a rule. It cal-
culates as the fraction of correct predictions among all covered instances:

δprec (C) := TP
TP + FP

(3)

In contrast, recall focuses on the coverage of a rule. It measures the fraction
of covered instances among all — covered and uncovered — instances for which
the label assignment in the rule’s head is correct:

δrec (C) := TP
TP + FN

(4)

The F-measure calculates as the (weighted) harmonic mean of precision and
recall. It allows to trade off the consistency and coverage of a rule depending on
the user-configurable parameter β:

δF (C) := β2 + 1
β2

δrec(C) + 1
δprec(C)

, with β ∈ [0,+∞] (5)
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As an alternative to the F-measure, we use different parameterizations of the
m-estimate in this work. It is defined as

δm (C) :=
TP +m · P

P+N
TP + FP +m

, with m ≥ 0 (6)

where P = TP + FN and N = FP + TN. Depending on the parameter m, this
measure trades off precision and weighted relative accuracy (WRA). If m = 0, it
is equivalent to precision and therefore focuses on consistency. As m approaches
+∞, it converges to WRA and puts more emphasis on coverage, respectively [13].

3 Induction of rule-based theories

For our experimental study, we implemented a method that allows to generate
a large number of rules for a given training data set in a short amount of time
(cf. Section 3.1).1 The rules should ideally be unbiased, i.e., they should not be
biased in favor of a certain heuristic, and they should be diverse, i.e., general rules
should be included as well as specific rules. Given that these requirements are
met, we consider the generated rules to be representative samples for the space of
all possible rules, which is way too large to be explored exhaustively. We use the
generated candidate rules as a starting point for building different theories. They
consist of a subset of rules that are selected with respect to a specific heuristic
(cf. Section 3.2) and filtered according to a threshold (cf. Section 3.3). Whereas
the first step yields a theory with great coverage, the threshold selection aims
at improving its consistency.

3.1 Generation of candidate rules

As noted in Section 2.2, we consider each label λi ∈ L of a MLC problem
independently. For each of the labels we train multiple random forests [5], using
varying configuration parameters, and extract rules from their decision trees.2
As illustrated in Algorithm 1, we repeat the process until a predefined number
of rules γ has been generated.

Each random forest consists of a predefined number of decision trees (we
specify I = 10). To ensure that we are able to generate diverse rules later on,
we vary the configuration parameter depth ∈ [0, 8] that specifies the maximum
depth of trees (unrestricted, if depth = 0) (cf. Algorithm 1, trainForest). For
building individual trees, we only take a subset of the available training instances
and attributes into account, which guarantees a diverse set of trees. Bagging is
used for sampling the training instances, i.e., if m instances are available in total,
m · P instances (P = 100%, by default) are drawn randomly with replacement.
Additionally, each time a new node is added to a decision tree, only a random
selection of K out of l attributes (K = log2 (l − 1) + 1, by default) is considered.
1 Source code available at https://github.com/mrapp-ke/RuleGeneration.
2 We use the random forest implementation provided by Weka 3.9.3, which is available

at https://www.cs.waikato.ac.nz/ml/weka.

https://github.com/mrapp-ke/RuleGeneration
https://www.cs.waikato.ac.nz/ml/weka
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Algorithm 1: Iterative generation of rules from random forests
input : min. number of rules to be generated γ
output: rule set R
R = ∅
while |R| < γ do

foreach λi ∈ L and depth ∈ [0, 8] do
rf = trainForest(λi, depth)
R = R ∪ extractRules(rf)

return R

To extract rules from a random forest (cf. Algorithm 1, extractRules), we
traverse all paths from the root node to a leaf in each of its decision trees. We
only consider paths that lead to a leaf where the minority class ti is predicted.
As a consequence, all rules that are generated with respect to a certain label λi
have the same head ŷi = ti. The body of a rule consists of a conjunction of all
conditions encountered on the path from the root to the correspondin

3.2 Candidate subset selection

Like many traditional rule learning algorithms, we use a separate-and-conquer
(SeCo) strategy for selecting candidate rules, i.e., new rules are added to the
theory until all training instances are covered (or until it describes the training
data sufficiently according to some stopping criterion). Whenever a new rule is
added to the theory the training instances it covers are removed (“separate”
step), and the next rule is chosen according to its performance on the remaining
instances (“conquer” step).

To create different theories, we select subsets of the rules that have been
generated earlier (cf. Section 3.1). We therefore apply the SeCo strategy for
each label independently, i.e., for each label λi we take all rules with head ŷi =
ti into account. Among these candidates we successively select the best rule
according to a heuristic δ (cf. Section 2.4) until all positive training instances
Pi = {(x,y) ∈ T | yi = ti}, with respect to label λi, are covered. To measure the
quality of a candidate r according to δ, we only take yet uncovered instances
into account for computing the confusion matrix Cr. If two candidates evaluate
to the same heuristic value, we prefer the one that a) covers more true positives,
or b) contains fewer conditions in its body. Whenever a new rule is added,
the overall coverage of the theory increases, as more positive training instances
are covered. However, the rule may also cover some of the negative instances
Ni = T \ Pi. As the rule’s prediction is incorrect in such cases, the consistency
of the theory may decrease.

3.3 Threshold selection

As described in Section 3.2, we use a SeCo strategy to select more rules until all
positive training instances are covered for each label. In this way, the coverage
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of the resulting theory is maximized at the expense of consistency, because each
rule contributes to the overall coverage, but might introduce wrong predictions
for some instances. To trade off between these aspects, we allow to (optionally)
specify a threshold φ that aims at diminishing the effects of inconsistent rules. It
is compared to a heuristic value that is calculated for each rule according to the
heuristic δ. For calculating the heuristic value, the rule’s predictions on the entire
training data set are taken into account. This is different from the candidate
selection discussed in Section 3.2, where instances that are already covered by
previously selected rules are not considered. Because the candidate selection
aims at selecting non-redundant rules, that cover the positive training instances
as uniformly as possible, it considers rules in the context of their predecessors. In
contrast, the threshold φ is applied at prediction time when no order is imposed
on the rules, i.e., all rules whose heuristic value exceeds the threshold equally
contribute to the prediction.

4 Evaluation

In this section, we present an empirical study that emphasises the need to use
varying heuristics for candidate selection and filtering to learn theories that are
tailored to specific multi-label measures. We further compare our method to
different baselines to demonstrate the benefits of being able to flexibly adjust a
learner to different measures, rather than employing a general-purpose learner.

4.1 Experimental setup

We applied our method to eight different data sets taken from the Mulan project.3
We set the minimum number of rules to be generated to 300.000 (cf. Algorithm 1,
parameter γ). For candidate selection according to Section 3.2, we used the
m-estimate (cf. Equation 6) with m = 0, 21, 22, . . . , 219. For each of these vari-
ants, we applied varying thresholds φ according to Section 3.3. The thresholds
have been chosen such that they are satisfied by at least 100%, 95%, . . . , 5% of
the selected rules. All results have been obtained using 10-fold cross validation.

In addition to the m-estimate, we also used the F-measure (cf. Equation 5)
with varying β-parameters. As the conclusions drawn from these experiments
are very similar to those for the m-estimate, we focus on the latter at this point.

Among the performance measures that we report are micro-averaged preci-
sion and recall. Given a global confusion matrix C := C1

1 ⊕ · · · ⊕C
j
i ⊕ · · · ⊕Cmn

that consists of the TP, FP, TN, and FN aggregated over all test instances xj
and labels λi, these two measures are calculated as defined in Equations 3 and 4.
Moreover, we report the micro-averaged F1 score (cf. Equation 5 with β = 1) as
well as Hamming and subset accuracy. Hamming accuracy calculates as

δHamm (C) := TP + TN
TP + FP + TN + FN

(7)

3 Data sets and detailed statistics available at http://mulan.sourceforge.net/
datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
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whereas subset accuracy differs from the other measures, because it is computed
instance-wise. Given true label vectors Y = (y1, . . . ,ym) and predicted label
vectors Ŷ = (ŷ1, . . . , ŷm), it measures the fraction of perfectly labeled instances:

δacc

(
Y, Ŷ

)
:= 1

m

∑
j

Jyj = ŷjK (8)

4.2 Analysis of different parameter settings

For a broad analysis, we trained 202 = 400 theories per data set using the same
candidate rules, but selecting and filtering them differently by using varying
combinations of the parameters m and φ as discussed in Section 4.1. We visualize
the performance and characteristics of the resulting models as two-dimensional
matrices of scores (cf. e.g. Figure 1). One dimension corresponds to the used
m-parameter, the other refers to the threshold φ, respectively.
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Some of the used data sets (cal500, flags, and yeast) contain very fre-
quent labels for which the minority class ti = 0. This is rather atypical in MLC
and causes the unintuitive effect that the removal of individual rules results in a
theory with greater recall and/or lower precision. To be able to compare differ-
ent parameter settings across multiple data sets, we worked around this effect
by altering affected data sets., i.e., inverting all labels for which ti = 0.

Predictive performance. In Figure 1 and 2 the average ranks of the tested
configurations according to different performance measures are depicted. The
rank of each of the 400 parameter settings was determined for each data set
separately and then averaged over all data sets. The depicted standard deviations
show that the optimal parameter settings for a respective measure may vary
depending on the data set. However, for each measure there is an area in the
parameter space where a good setting can be found with high certainty.

As it can clearly be seen, precision and recall are competing measures. The
first is maximized by choosing small values for m and filtering extensively, the
latter benefits from large values for m and no filtering. Interestingly, setting
m = 0, i.e., selecting candidates according to the precision metric, does not
result in models with the highest overall precision. This is in accordance with
Figure 3, where the models with the highest F1 score do not result from using
the F1-measure for candidate selection. Instead, optimizing the F1 score requires
to choose small values for m to trade off between consistency and coverage. The
same applies to Hamming and subset accuracy, albeit both of these measure
demand to put even more weight on consistency and filtering more extensively
compared to F1.
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Fig. 4. Ranks and standard deviation of average ranks over all data sets regarding the
number of rules and conditions. A smaller rank means more rules or conditions.

m = 16, φ = 0.3 Mi. Precision = 74.07%, Mi. Recall = 78.26%

Cough← “cough” ∧ “aldrich” ∧ “opacity” ∧ “tachypnea” ∧ “streaky” ∧ “side” ∧
“distal” ∧ “diaphragm”

Cough← “cough” ∧ “x− rays” ∧ “vomiting” ∧ “proximity” ∧ “hematuria” ∧
“focal”

Cough← “cough” ∧ “group” ∧ “edema” ∧ “fever”
Cough← “cough” ∧ “lobe” ∧ “breathing”
Cough← “coughing”
m = 262144, φ = 1.0 Mi. Precision = 65.61%, Mi. Recall = 89.57%

Cough← “cough” ∧ “ureteral” ∧ “stones” ∧ “contrast”
Cough← “coughing”
Cough← “code”
Cough← “substance”

Fig. 5. Exemplary rule sets predicting the label 786.2:Cough of the data set medical,
which contains textual radiology reports that were categorized into diseases.
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Model characteristics. Besides the predictive performance, we are also in-
terested in the characteristics of the theories. Figure 4 shows how the number
of rules in a theory as well as the average number of conditions are affected by
varying parameter settings. The number of rules independently declines when
using greater values for the parameter m and/or smaller values for φ. resulting
in less complex theories that can be comprehended by humans more easily. The
average number of conditions is mostly affected by the parameter m.

Figure 5 provides an example of how different parameters affect the model
characteristics. It shows the rules for predicting the same label as induced by
two fundamentally different approaches. The first approach (m = 16, φ = 0.3)
reaches high scores according to the F1-measure, Hamming accuracy, and subset
accuracy, whereas the second one (m = 262144, φ = 1.0) results in high recall.

4.3 Baseline comparison

Although the goal of this work is not to develop a method that generally out-
performs existing rule learners, we want to ensure that we achieve competi-
tive results. For this reason, we compared our method to JRip, Weka’s re-
implementation of Ripper [7], using the binary relevance method. By default,
Ripper uses incremental reduced error pruning (IREP) and post-processes the
induced rule set. Although our approach could make use of such optimizations,
this is out of the scope of this work. For a fair comparison, we also report the
results of JRip without using IREP (P = false) and/or with post-processing
turned off (O = 0).

Note that we do not consider the random forests from which we generate rules
(cf. Section 3.1) to be relevant baselines. This is, because random forests use vot-
ing for making a prediction, which is fundamentally different than rule learners
that model a DNF. Also, we train random forests consisting of a very large
number of trees with varying depths to generate diverse rules. In our experience,
these random forests perform badly compared to commonly used configurations.

Table 1. Predictive performance of Ripper using IREP and post-processing (R3),
without using post-processing (R2), and using neither IREP nor post-processing (R1)
compared to approaches trying to optimize micro-averaged F1 (MF ), Hamming accu-
racy (MH), and subset accuracy (MS).

F1 Hamming acc. Subset acc.
R1 R2 R3 MF R1 R2 R3 MH R1 R2 R3 MS

birds 43.65 41.12 46.01 45.33 94.39 94.48 95.17 95.10 44.20 45.57 51.48 48.85
cal500 33.63 33.18 33.76 40.10 82.14 83.66 85.39 86.02 0.00 0.00 0.00 0.00
emotions 56.96 58.68 60.97 65.20 75.12 75.38 77.21 77.65 18.04 20.40 23.60 22.42
enron 50.57 53.05 55.33 51.07 94.35 94.70 94.93 94.54 6.17 7.99 9.16 7.81
flags 71.81 72.96 74.85 72.83 73.02 74.08 75.20 73.39 15.47 17.05 21.00 9.82
genbase 98.83 98.68 98.68 99.14 99.89 99.88 99.88 99.92 97.28 96.83 96.83 97.89
medical 81.40 83.67 84.81 81.67 99.01 99.10 99.15 98.98 66.74 69.91 72.16 66.43
scene 63.97 63.25 64.55 67.44 87.87 87.25 88.03 88.93 46.61 44.54 46.24 49.73
yeast 58.65 60.41 61.19 64.25 78.50 78.29 78.77 79.24 8.73 7.86 9.18 11.75
Avg. rank 3.44 3.00 1.67 1.78 3.44 2.89 1.67 1.89 2.89 2.67 1.56 2.11
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We tested three different configurations of our approach. The parameters
m and φ used by these approaches have been determined on a validation set
by using nested 5-fold cross validation on the training data. For the approach
MF , the parameters have been chosen such that the F1-measure is maximized.
The approaches MH and MS were tuned with respect to Hamming and subset
accuracy, respectively.

According to Table 1, our method is able to achieve reasonable predictive
performances. With respect to the measure they try to optimize, our approaches
generally rank before JRip with optimizations turned off (R1), which is the
competitor that is conceptually closest to our method. Although IREP definitely
has a positive effect on the predictive performance, our approaches also tend to
outperform JRip with IREP enabled, but without using post-processing (R2).
Despite the absence of advanced pruning and post-processing techniques, our
approaches are even able to surpass the fully fledged variant of JRip (R1) on some
data sets. We consider these results as a clear indication that it is indispensable
to be able to flexibly adapt the heuristic used by a rule learner — which JRip
is not capable of —, if one aims at deliberately optimizing a specific multi-label
performance measure.

5 Related work

Several rule-based approaches to multi-label classification have been proposed
in the literature. On the one hand, there are methods based on descriptive rule
learning, such as association rule discovery [17,19,23,24], genetic algorithms [1,6],
or evolutionary classification systems [2, 3]. On the other hand, there are algo-
rithms that adopt the separate-and-conquer strategy used by many traditional
rule learners for binary or multi-class classification, e.g. by Ripper [7], and trans-
fer it to MLC [20,22]. Whereas in descriptive rule learning one does usually not
aim at discovering rules that minimize a certain (multi-label) loss, the latter
approaches employ a heuristic-guided search for rules that optimize a given rule
learning heuristic and hence could benefit from the results of this work.

Similar to our experiments, empirical studies aimed at discovering optimal
rule learning heuristics have been published in the realm of single-label classifi-
cation [14, 15]. Moreover, to investigate the properties of bipartition evaluation
functions, ROC space isometrics have been proven to be a helpful tool [9, 11].
They have successfully been used in the literature to study the effects of using
different heuristics in separate-and-conquer algorithms [12], or for ranking and
filtering rules [10].

6 Conclusions

In this work, we presented a first empirically study that thoroughly investigates
the effects of using different rule learning heuristics for candidate selection and fil-
tering in the context of multi-label classification. As commonly used multi-label
measures, such as micro-averaged F1, Hamming accuracy, or subset accuracy,
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require to put more weight on the consistency of rules rather than on their cov-
erage, models that perform well with respect to these measures are usually small
and tend to contain specific rules. This is beneficial in terms of interpretability
as less complex models are assumed to be easier to understand by humans.

As our main contribution, we emphasise the need to flexibly trade off the
consistency and coverage of rules, e.g., by using parameterized heuristics like
the m-estimate, depending on the multi-label measure that should be optimized
by the model. Our study revealed that the choice of the heuristic is not straight-
forward, because selecting rules that minimize a certain loss functions locally
does not necessarily result in that loss being optimized globally. E.g., selecting
rules according to the F1-measure does not result in the overall F1 score to be
maximized. For optimal results, the trade-off between consistency and coverage
should be fine-tuned depending on the data set at hand. However, our results
indicate that, even across different domains, the optimal settings for maximizing
a measure can often be found in the same region of the parameter space.

In this work, we restricted our study to DNFs, i.e., models that consist of non-
conflicting rules that all predict the same outcome for an individual label. On the
one hand, this restriction simplifies the implementation and comprehensibility of
the learner, as no conflicts may arise at prediction time. On the other hand, we
expect that including both, rules that model the presence as well as the absence
of labels, could be beneficial in terms of robustness and could have similar,
positive effects on the consistency of the models as the threshold selection used
in this work. Furthermore, we leave the empirical analysis of macro-averaged
performance measures for future work.
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