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Abstract

The additively separable hedonic game (ASHG) is a model of coalition formation games on
graphs. In this paper, we intensively and extensively investigate the computational complexity
of finding several desirable solutions, such as a Nash stable solution, a maximum utilitarian
solution, and a maximum egalitarian solution in ASHGs on sparse graphs including bounded-
degree graphs, bounded-treewidth graphs, and near-planar graphs. For example, we show
that finding a maximum egalitarian solution is weakly NP-hard even on graphs of treewidth
2, whereas it can be solvable in polynomial time on trees. Moreover, we give a pseudo fixed
parameter algorithm when parameterized by treewidth.

1 Introduction

In this paper, we investigate the computational complexity of additively separable hedonic games
on sparse graphs from the viewpoint of several solution concepts.

Given the set of agents, the coalition formation game is a model of finding a partition of the
set of agents into subsets under a certain criterion, where each of the subsets is called a coalition.
Such a partition is called a coalition structure. The hedonic game is a variant of coalition formation
games, where each agent has the utility associated with his/her joining coalition. In the typical
setting, if an agent belongs to a coalition where his/her favorite agents also belong to, his/her
utility is high and he/she feels comfortable. Contrarily, if he/she does not like many members in
the coalition, his/her utility must be low; since he/she feels uncomfortable, he/she would like to
move to another coalition. Although the model of hedonic games is very simple, it is useful to
represent many practical situations, such as formation of research team , formation of coalition
government , clustering in social networks , multi-agent distributed task assignment ,
and so on.

The additively separable hedonic game (ASHG) is a class of hedonic games, where the utility
forms an additively separable function. In ASHG, an agent has a certain valuation for each of the
agents, which represents his/her preference. The valuation could be positive, negative or 0. If the
valuation of agent u for agent v is positive, agent u prefers agent v, and if it is negative, agent u
does not prefer agent v. If it is 0, agent u has no interest for agent v. The utility of agent u for
u’s joining coalition C' is defined by the sum of valuations of agent u for other agents in C'. This
setting is considered not very but reasonably general. Due to this definition, it can be also defined
by an edge-weighted directed graph, where the weight of edge (u,v) represents the valuation of u
to v. If a valuation is 0, we can remove the corresponding edge. Note that the undirected setting
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is possible, and in the case the valuations are symmetric; the valuation of agent u for agent v is
always equal to the one of agent v for agent u.

In the study of hedonic games, several solution concepts are considered important and well
investigated. One of the most natural solution concepts is mazimum utilitarian, which is so-called
a global optimal solution; it is a coalition structure that maximizes the total sum of the utilities
of all the agents. The total sum of the utilities is also called social welfare. Another concept of
a global optimal solution is mazimum egalitarian. It maximizes the minimum utility of an agent
among all the agents. That is, it makes the unhappiest agent as happy as possible. Nash-stability,
envy-free and max envy-free are more personalized concepts of the solutions. A coalition structure
is called Nash-stable if no agent has an incentive to move to another coalition from the current
joining coalition. Such an incentive to move to another coalition is also called a deviation. Agent
u feels envious of v if u can increase his/her utility by exchanging the coalitions of v and v. A
coalition structure is envy-free if any agent does not envy any other agent. Furthermore, the best
one among the envy-free coalition structures is also meaningful; it is an envy-free coalition structure
with maximum social welfare. Some other concepts are also considered, though we focus on these
concepts in this paper.

Of course, it is not trivial to find a coalition structure satisfying above mentioned solution
concepts. Ballester studies the computational complexity for finding coalition structures of several
concepts including the above mentioned ones [5]. More precisely, he shows that determining whether
there is a Nash stable, an individually stable, and a core stable coalition structure is NP-complete.
In [24], Sung and Dimitrov show that the same results hold for ASHG. Aziz et al. investigate the
computational complexity for many concepts including the above five solution concepts |4]. In
summary, ASHG is unfortunately NP-hard for the above five solution concepts. These hardness
results are however proven without any assumption about graph structures. For example, some of
the proofs suppose that graphs are weighted complete graphs. This might be a problem, because
graphs appearing in ASHGs for practical applications are so-called social networks; they are far
from weighted complete graphs and known to be rather sparse or tree-like [1,|11]. What if we
restrict the input graphs of ASHG to sparse graphs? This is the motivation of this research.

In this paper, we investigate the computational complexity of ASHG on sparse graphs from
the above five solution concepts. The sparsity that we consider in this paper is as follows: graphs
with bounded degree, graphs with bounded treewidth and near-planar graphs. The degree is a
very natural parameter that characterizes the sparsity of graphs. In social networks, the degree
represents the number of friends, which is usually much smaller than the size of network. The
treewidth is a parameter that represents how tree-like a graph is. As Adcock, Sullivan and Mahoney
pointed out in [l], many large social and information networks have tree-like structures, which
implies the significance to investigate the computational complexity of ASHG on graphs with
bounded treewidth. Near-planar graphs here are p-apex graphs. A graph G is said to be p-apex if G
becomes planar after deleting p vertices or fewer vertices. Near-planarity is less important than the
former two in the context of social networks, though it also has many practical applications such as
transportation networks. Note that all of these sparsity concepts are represented by parameters, i.e.,
treewidth, maximum degree and p-apex. In that sense, we consider the parameterized complexity
of ASHG of several solution concepts in this paper.

This is not the first work that focuses on the parameterized complexity of ASHG. Peters presents
that Nash-stable, Maximum Utilitarian, Maximum Egalitarian and Envy-free coalition structures
can be computed in gtwA?po(1) time, where tw is the treewidth and A is the maximum degree of
an input graph [22]. In other word, it is fized parameter tractable (FPT) with respect to treewidth
and maximum degree. This implies that if both of the treewidth and the maximum degree are
small, we can efficiently find desirable coalition structures. This result raises the following natural
question: is finding these desirable coalition structures still FPT when parameterized by either the
treewidth or the maximum degree?

This paper answers the question from various viewpoints. Different from the case parameterized
by treewidth and maximum degree, the time complexity varies depending on the solution concepts.



Table 1: Complexity of ASHGs

Concept Time complexity to compute Reference
Nash stable NP-hard

PLS-complete (symm)

PLS-complete (symm, A =7)

twPt)pn (symm, FPT by treewidth)

Max Utilitarian | strongly NP-hard (symm)

strongly NP-hard (symm, 3-apex)

twO®)n (FPT by treewidth)

Max Egalitarian | strongly NP-hard

weakly NP-hard (symm, 2-apex, vc = 4)
weakly NP-hard (symm, planar, pw = 4, tw = 2)
strongly NP-hard (symm)

linear (symm, tree)

P (tree)

(twW)°t)p (pseudo FPT by treewidth)
Envy-free trivial

Max Envy-free weakly NP-hard (symm, planar, vc = 2, tw = 2)
strongly NP-hard (symm)

linear (symm, tree)

For example, we can compute a maximum utilitarian coalition structure in tw?)n time, whereas

computing a maximum egalitarian coalition structure is weakly NP-hard even for graphs with
treewidth at most 2. Some other results of ours are summarized in Table For more details, see
Section [[L1l Also some related results are summarized in Section [[.2]

1.1 Owur contribution

We first study (symmetric) NASH STABLE on bounded degree graphs. We show that the problem is
PLS-complete even on graphs with maximum degree 7. PLS is a complexity class of a pair of an
optimization problem and a local search for it. It is originally introduced to capture the difficulty
of finding a locally optimal solution of an optimization problem. In the context of hedonic games, a
deviation corresponds to an improvement in local search, and thus PLS or PLS-completeness is
also used to model the difficulty of finding a stable solution.

We next show that MAX UTILITARIAN is strongly NP-hard on 3-apex graphs, whereas it can
be solved in time tw?®)p, and hence it is FPT when parameterized by treewidth tw. For MAX
ENVY-FREE , we show that the problem is weakly NP-hard on series-parallel graphs with vertex
cover number at most 2 whereas finding an envy-free partition is trivial [4].

Finally, we investigate the computational complexity of MAX EGALITARIAN. We show that
MaX EGALITARIAN is weakly NP-hard on 2-apex graphs with vertex cover number at most 4 and
planer graphs with pathwidth at most 4 and treewidth at most 2. Moreover, we show that MAX
EGALITARIAN and MAX ENVY-FREE are strongly NP-hard even if the preferences are symmetric. In
contrast, an egalitarian and envy-free partition with maximum social welfare can be found in linear
time on trees if the preferences are symmetric. Moreover, MAX EGALITARIAN can be computed in
polynomial time even if the preferences are asymmetric. In the end of this paper, we give a pseudo
FPT algorithm when parameterized by treewidth.



1.2 Related work

The coalition formation game is first introduced by Dreze and Greenber [10] in the field of
Economics. Based on the concept of coalition formation games, Banerjee, Konishi and Sénmez [6]
and Bogomolnaia and Jackson [7] study some stability and core concepts on hedonic games. For the
computational complexity on hedonic games, Ballester shows that finding several coalition structures
including Nash stable, core stable, and individually stable coalition structures is NP-complete [5].
For ASHGs, Aziz et al. investigate the computational complexity of finding several desirable
coalition structures |4]. Gairing and Savani [14] show that computing a Nash stable coalition
structure is PLS-complete in symmetric AGHGs whereas Bogomolnaia and Jackson (7] prove that
a Nash stable coalition structure always exists. In [22], Peters designs parameterized algorithms for
computing some coalition structures on hedonic games with respect to treewidth and maximum
degree.

2 Preliminaries

In this paper, we use the standard graph notations. For G = (V, E), we define n = |V| and
m = |E|. For V' C V, we denote by G[V'] the subgraph of G induced by V’. We denote the closed
neighbourhood and the open neighbourhood of a vertex v by N[v] and N(v), respectively. The
degree of v is denoted by d(v). Moreover, the maximum degree of G is denoted by A(G). For
simplicity, we sometimes omit the subscript G.

2.1 Hedonic game

An additively separable hedonic game (ASHG) is defined on a directed edge-weighted graph G =
(V, E,w). Each vertex v € V is called an agent. The weight of an edge e = (u,v), denoted by w, or
Wy, Tepresents the valuation of u to v. An ASHG is said to be symmetric if wy, = w,, holds for
any pair of v and v. Any symmetric ASHG can be defined on an undirected edge-weighted graph.
We denote an undirected edge by {u,v}. Note that any edge of weight 0 is removed from a graph.

Let P be a partition of V. Then C' € P is called a coalition. We denote by C,, € P the coalition to
which an agent u € V belongs under P, and by E(C,,) the set of edges {(u,v)U (v,u) € E | v € Cy}.
In ASHGs, the utility of an agent u under P is defined as up(u) = 3, ¢ N(u)nc, Wuv, Which is the
sum of weights of edges from u to other agents in the same coalition. Also, the social welfare of
P is defined as the sum of utilities of all agents under P. Note that the social welfare equals to
exactly twice the sum of weights of edges in coalitions.

Next, we define several concepts of desirable solution in ASHGs.

Definition 1 (Nash-stable). A partition P is Nash-stable if there exists no agent u and coalition
C' # C, containing u, possibly empty, such that

D, ww< D, wu
vEN (u)NCly vEN (u)NC’

As an important fact, in any symmetric ASHG, a partition with maximum social welfare is
Nash-stable by using the potential function argument [7].

Proposition 1. In any symmetric ASHG, a partition with mazximum social welfare is Nash-stable.

Thus, if we can compute a partition with maximum social welfare in a symmetric ASHG, then
we also obtain a Nash-stable partition.

Definition 2 (Envy-free). We say an agent uy € C,,, envies uy € Cy, if the following inequality

holds:
Z Wayyv < Z Wy v-

vEN (u1)NCuy VEN (u)N(Cy \{uz2 }UTus })



That is, uy envies ug if the utility of uy increases by replacing us by uy. A partition P is envy-free
if any agent does not envy an agent.

NASH-STABLE, ENVY-FREE, MAX ENVY-FREE, MAX UTILITARIAN, and MAX EGALITARIAN
are the following problems: Given a weighted graph G = (V, E, w), find a Nash-stable partition, an
envy-free partition, an envy-free partition with maximum social welfare, a maximum utilitarian
partition, and a maximum egalitarian partition, respectively.

2.2 Graph classes

A planar graph is a graph that can be drawn on the plane in such a way that its edges intersect only
at their endpoints. For p > 1, a p-apex graph is a graph that can be planar by removing p vertices
or fewer vertices from it. Note that a planar graph is a p-apex graph for any p > 1. A graph G is
called series-parallel if every 2-connected component of G can be constructed by applying series
operation and parallel operation compositions recursively: The series operation entails subdividing
an edge by a new vertex (replacing an edge by two edges in series). The parallel operation entails
replacing an edge by two edges in parallel. It is well-known that a series-parallel graph is planar,
and the class of series-parallel graph is equivalent to graphs with treewidth 2.

2.3 Graph parameters and parameterized complexity
For the basic definitions of parameterized complexity, such as the classes FPT and XP, refer to [§].

Definition 3 (Tree decomposition). A tree decomposition of an undirected graph G = (V, E) is
defined as a pair (X,T), where X = {X1,Xo,..., XNy CV}, and T is a tree whose nodes are labeled
by I €{1,2,...,N}, such that

1. U, Xi =V,

2. For all {u,v} € E, there exists an X; such that {u,v} C X,

3. For alli,j,k €1, if j lies on the path from i to k in T, then X; N X} C Xj.

Here, X; is called a bag. The width of a tree decomposition is defined as min;er | X;| — 1, that
is, minimum size of a bag minus one. Furthermore, the treewidth of G, denoted by tw(G), is
minimum possible width of a tree decomposition of G. A tree decomposition (X, T) is called a path
decomposition if T is a path. The pathwidth of G, denoted by pw(G), is minimum possible width
of a path decomposition of G.

We introduce a special type of tree decomposition, a nice tree decomposition, introduced by
Kloks [18]. It is a special binary tree decomposition which has four types of nodes, named leaf,
introduce vertez, forget and join. In [89], Cygan et al. added a fifth type, the introduce edge node.

Definition 4 (Nice tree decomposition). A tree decomposition (X, T) is called a nice tree decom-
position if it satisfies the following:

1. T is rooted at a designated node r € I satisfying | X,| =0, called the root node,
2. Fach node of the tree T' has at most two children,
3. Fach node in T has one of the following five types:

e A leaf node i which has no children and its bag X; satisfies | X;| =0,
e An introduce vertex node i has one child j with X; = X; U{v} for a vertexv € V,

e An introduce edge node i has one child j and labeled with an edge (u,v) € E where
u,v € X; = Xj,



o A forget node i has one child j and satisfies X; = X; \ {v} for a vertexv eV,

e A join node ¢ has two children nodes ji,j2 and satisfies X; = X; = Xj,.

Any tree decomposition of width w can be transformed into a nice tree decomposition of w with
O(n) nodes in linear time [3].

A vertex cover S is the set of vertices such that every edge has at least one vertex in S. The
size of minimum vertex cover in G is called vertez cover number, denoted by ve(G). The following
proposition is a well-known relationship between treewidth, pathwidth, and vertex cover number.

Proposition 2. For any graph G, it holds that tw(G) < pw(G) < ve(G).

In [13], Fomin and Thilikos proved that for any planar graph G, tw(G) < 3.183y/n — 1 and a
tree decomposition of such width can be computed in polynomial time. Using this fact, we obtain
the following proposition for p-apex graphs.

Proposition 3. Let p be some constant. For any p-apez graph G, tw(G) < 3.183/n +p — 1.
Moreover, a tree decomposition of such width can be computed in polynomial time.

Proof. In [13], Fomin and Thilikos proved that for any planar graph G, tw(G) < 3.183y/n — 1 and
a tree decomposition of such width can be computed in polynomial time. Thus, we first guess p
vertices such that G becomes planar by deleting them. Since we can check whether a graph is
planar in time O(n?) [17], this can be done in polynomial time by using the brute forth. Now,
we have a planar graph G’ obtained from G by deleting such p vertices. Then we compute a tree
decomposition of width tw(G’) < 3.183y/n — 1 in polynomial time. Finally, we add p vertices in
V(G)\ V(G’) to each bag of a tree decomposition. The width of such a tree decomposition of G is
clearly at most 3.183y/n +p — 1. O

Proposition [3| implies that there is a 20(vV7*198")_time algorithm for any p-apex graph if there
is a tw@("W)_time or even an n®™)_time algorithm. Therefore, MAX UTILITARIAN and MAX
EGALITARIAN with restricted weights can be solved in time 20(V71081) on p-apex graphs from
Theorems Bl and [0l

2.4 Problem list

In this subsection, we list problems used for the proofs in this paper.

e MaX k-CuT: Given an undirected and edge-weighted graph G = (V, E, w), find a partition
(V1,V2,..., Vi) that maximizes 30, cv. . ev, vizv, Wurue- MAX 2-CUT is known as MAX-
Cur.

e k-COLORING: Given an undirected graph G = (V, E), determine whether there is a coloring
c:V = {1,...,k} such that ¢(u) # c(v) for every (u,v) € E.

e PARTITION: Given a finite set of integers A = {a1,a2,...,a,} and W = """ | a;, determine
whether there is partition (A, A2) of A where Ay UAy =Aand > ., a=> 4 a=W/2.
e 3-PARTITION: Given a finite set of integers A = {ay,...,as,}, determine whether there is

partition (Ag, ..., A,) such that |[4;| =3 and >, ., a = B for each i where B =3} _,a/n.

a€A

3 Nash-stable

Any symmetric ASHG always has a Nash-stable partition by Proposition However, finding
a Nash-stable solution is PLS-complete [14]. In this section, we prove that NASH-STABLE is
PLS-complete even on bounded degree graphs.



Figure 1: The constructed graph G’ in the proof of Theorem

Theorem 1. Symmetric NASH-STABLE is PLS-complete even on graphs with maximum degree
A=T.

Proof. We give a reduction from LocAL MaAX-CuT with flip. LocAL MAX-CUT is a local search
problem of MAX-CuUT. In the flip neighborhood, two solutions are neighbors if one can be obtained
from the other by moving one element to the other set. LOCAL MAX-CuT with flip is PLS-complete
on graphs with maximum degree A =5 [12].

Given an edge weighted graph G = (V| E,w), we construct G’ = (V', E’,w') as follows. Let
W = EESE |we| + 1 and M = nW 4 1. First we set w, = —w, for every e € E. Then we add

Py = {p} ,...,p;;‘H} and Pgp = {pf,... 7pff_H} that form paths of length n, respectively. For
1 < i < n, we define w;?pﬁrl = w;fp,il = i(W +1) as the weight of {p*, p{,} and {p?,pZ ,}. We

connect each pf‘ and pP to v; € V by an edge of weight W, respectively. Finally, we connect p g
and pfﬂ by an edge of weight —3M . Note that P4 U Pp forms a path of length 2n + 1. We can
observe that the degree of a vertex in V is at most 7 and in P4 U Pg is at most 3.

In any Nash-stable partition in G, p2 1 and pB 1 must be in different coalitions. If not so, the
utility of p/ 41 1s at most —3M +n(W +1)IW < 0, and it has an incentive to deviate to a singleton
because the utility in a singleton is 0. Moreover, in any Nash-stable partition of G’, every vertex
in P4 always belong to the same coalition. Otherwise, there is an agent pf‘ with utility at most
(i—1)(W+1)+ W =4(W +1) — 1. Then the utility of p/* can be increased to at least i(W + 1) by
deviating to the coalition to which jr)ﬁ_1 belongs. Similarly, every vertex in Pp always belong to the
same coalition in any Nash-stable partition of G’. Therefore, in any Nash-stable partition, there
exist a coalition C4 containing all vertices included in P4 and a coalition Cp containing all vertices
included in Pg. Furthermore, if a vertex in V' does not belong to neither C4 nor Cp, the utility is
at most 0. Since the utility of the vertex in C4 or C'g is more than 0, it must belong to either C4
or C'g. Thus, any Nash-stable partition P* in G’ has exactly two coalitions C4 containing P4 and
Cp containing Ppg.

Here, we can observe that any Nash-stable partition in G’ is a local optimal solution of LOCAL
MAX-CuUT in G. If not so, there is a vertex v € V that can increase the weight of a cut in G by
flipping v from the current set to the other. In G’, such a vertex deviates to the other coalition
because the utility increases. Conversely, we are given a local optimal cut (Cy,C5) of LOCAL
MAX-CuT. Then a partition (C; U P4,Co U Pg) in G’ is a NASH-STABLE partition. This is because
any vertex in P4 and Pp does not deviate from the current coalition. Moreover, suppose that there
is a vertex v in C7 U Cy = V deviates to the other coalition to increase the utility. This implies that
there is a vertex v in G that increases the weight by flipping v. This contradicts the optimality of
(C1,Cs). O



4 Max Utilitarian

Theorem 2. MaX UTILITARIAN is strongly NP-hard on 3-apex graphs even if the preferences are
symmetric.

Proof. Let G = (V, E) be an unweighted graph where |V| = n and |E| = m. We first confirm that
MAX 3-Curt is NP-hard for planar graphs. This can be done by a reduction from 3-COLORING on
planar graphs which is NP-complete [16]. If an unweighted graph G is 3-colorable, it is clear that
G has a 3-cut of size m because for every edge, its endpoints have different colors. On the other
hand, if an unweighted graph G has a 3-cut of size m, it is obviously 3-colorable.

Then we give a reduction from MAX 3-CUT to MAX UTILITARIAN. Given an unweighted planar
graph G = (V, E) of an instance of Max 3-CuT, we add three super vertices S = {s1, s2, s3} such
that and each s; is connected to all vertices in G by three edges of weight m. Moreover, we connect
S1, 82, S3 to each other by edges of weight —6mn, and hence S forms a clique. Finally, for each edge
e € E, we define the weight w, = —1. Let G’ be the constructed graph.

In the following, we show that there is a 3-cut of size k in G if and only if there is a partition
P with social welfare 2(3mn —m + k). Given a 3-cut (Vi, V2, V3) of size k in G, we construct a
partition P = {V3 U {s1},Va U {s2}, V3 U {s3}}. Since the number of edges in E in coalitions is
m — k, any edge in G[S] is not contained in coalitions, and every edge between s € S and v € V' is
contained in coalitions, the social welfare of P is 2(3mn — m + k).

Conversely, we are given a partition P of social welfare 2(3mn — m + k). If a coalition contains
at least two vertices in S, the social welfare is at most 6m — 6mn < 0. Thus, each s; does not
belong to the same coalition. If there is v € V that does not belong to a coalition containing
s € S, then the social welfare is at most 2 - 3m(n — 1) = 6mn — 6m < 2(3mn — m + k). Hence, V
must be partitioned into three sets adjacent to either s;, s or s3. Since the social welfare of P is
2(3mn —m + k), every edge between s € S and v € V is contained in a coalition, and the weight of
an edge in E is —1, the number of edges in F in coalitions is m — k. This implies that there is a
3-cut of size k. O

Theorem 3. Given a tree decomposition of width tw, MAX UTILITARIAN can be solved in time
twO Wy,

Proof. Our algorithm is based on dynamic programming on a tree decomposition for connectivity
problems such as STEINER TREE [8]. In our dynamic programming, we keep track of all the
partitions in each bag.

We define the recursive formulas for computing the social welfare of each partition P in the
subgraph based on a subtree of a tree decomposition. Let P; be a partition of X;. We denote by
A;[P;] the maximum social welfare in the subgraph G; such that X; is partitioned into P;. Notice
that A.[0] in root node 7 is the maximum social welfare of G. We denote a parent node by i and
its child node by j. For a join node, we write j; and js to denote its two children.

Leaf node: In leaf nodes, we set A;[f)] = 0.

Introduce vertex v node: In an introduce vertex v node i, let C,, € P; be the coalition including
v. We notice that the social welfare is increased by edges between v and vertices in the coalition
including v. Thus, the recursive formula is defined as: A;[Pi] = A;[Pj] + 3 e vwyne, Wuw +

ZuEN(v)OCU Wy, Where Pj =P \ {Cv} U {Cv \ {'U}}

Forget v node: In a forget v node, we only take a partition with maximum social welfare when
we forget v because v does not affect the social welfare hereafter. Thus, the recursive formula is
defined as: A;[P;] = maxp,cp; A;[P;] where D; = {P; | P; \ {Co} U{C, \ {v}} = Pi}.



Figure 2: The constructed graph H.

Join node: A join node ¢ has two child nodes j1,j2 where X; = X; = Xj,. The social welfare of
each partition X; is the sum of the corresponding partition of X;, = X;,. Therefore, the recursive
formula for a join node is defined as: A;[P;] = Aj, [Pi] + Aj, [Pi] = Y gep, 2o (Wyy + Wyy). The
last term means subtracting the double counting of edges.

Because the size of each DP table is tw®) we can compute the recursive formulas in time
twO(W)  As the result, the total running time is tw@(W)n, O

u,veC

By Proposition [l symmetric NASH-STABLE is also solvable in time tw@ %)y,

Corollary 1. Given a tree decomposition of width tw, symmetric NASH-STABLE can be solved in
time twOtWp,

5 Max Envy-free and Max Egalitarian

In [4], Aziz et al. show that finding an envy-free partition is trivial because a partition of singletons
is envy-free. However, finding a mazimum envy-free partition is much more difficult than finding
an envy-free partition.

Theorem 4. MAX ENVY-FREE is weakly NP-hard on series-parallel graphs of vertex cover number
2 even if the preferences are symmetric.

Proof. We give a reduction from PARTITION, which is weakly NP-complete [15]. Without loss of
generality, we suppose a1 < as < ... < a, and a, < W/2.

Given a set of positive integers A = {aj,as,...,a,}, we build the corresponding vertex set
Va = {Vay,Vag, .-, Va, }- Then we construct an edge-weighted complete bipartite graph K, =
(VaUU, E) where U = {u1,uz}. For each edge {v,,,u;} € E, we set the weight w,, ., = a;. Finally,
we add e, = {u1,u2} of weight —2W — 1. Let H = (V4 UU, EU {e,}) be the constructed graph.
Note that H is a series parallel graph and vc(H) = 2 (see Fig. [2)).

We show that an instance of PARTITION is a yes-instance if and only if there is an envy-free
partition with social welfare at least 2W in H.

Given a partition (Ay, A2) of A such that 3 ., a=> ., a=W/2 let V4, and Va, be the
corresponding vertex set to A; and As, respectively. In short, V4, = {v, | a € A;} for i € {1,2}.
Let P = {Va, U{u1},Va, U{uz}} be a partition in H. By the definition of H, we have up(v,) = a
for every v, € V4 and up(u) = W/2 for every u € U. Let C; = Vyu, U{u;} for i € {1,2}. For an
agent v, € C;, consider C! = C; \ {w} U{v,} for any w € C; # C;. In this case, the utility of v, is
at most a. Moreover, consider C] = Cy \ {w} U {u1} for any w € Co. Then the utility of u; is at
most W/2. Therefore, P is envy-free. Also, the social welfare of P is W/2+W/2+ 3 ., a =2W.

Conversely, we are given an envy-free partition P with social welfare at least 2W in H. If
P has a coalition that contains both u; and us, the social welfare of P is strictly less than 2W.
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Figure 3: The constructed graph H'. Figure 4: The constructed graph H”.

Thus, there are two coalitions Cy, Cs in P such that u; € C; and us € Cs. For each a € A, one
of v, € C1, v, € O, and v, € C’ holds where C’/ C V4 does not contain u; and us. This implies
that the social welfare of P is at most 2IW because at most one of {v,,u1} and {v,, u2} contributes
to the social welfare. If there is an agent v, in neither C’, the social welfare of P is strictly less
than 2W. Therefore, it holds that either v, € Cy or v, € Cs for each v, € V4 in P. Suppose that
up(uy) > up(usz). Then ug envies up by the definition of H. This contradicts the assumption. Now,
we have up(u1) = up(ug) = W/2. Let A, = {a € A| v, € N(u;) C Vu} for i € {1,2}. Then a
partition {A;, A2} satisfies that Y ., a =), a=W/2. O

Next, we show that MAX EGALITARIAN is weakly NP-hard on series-parallel graphs of pathwidth
4. Note that the class of series-parallel graph is equivalent to graphs with treewidth 2.

Theorem 5. In the symmetric hedonic games, MAX EGALITARIAN is weakly NP-hard on series-
parallel graphs of pathwidth 4 even if the preferences are symmetric.

Proof. We give a reduction from PARITION as in the proof of Theorem [ though we adopt a
bit different graph from H. For each v,, in Vi, we create two copies of v,,, denoted by vy,
and v, respectively, such that they form a clique. For each a; € A, we define the weights
Wy, vf, = W, vy = = W/4 — a;/2 and the weight w,, o= =W/4+ al/2. Without loss of generality,
we can assume that each a; is even. Let Vi ={v, | ac Al and V) ={v] |a € A} and let H' be
the constructed graph (see Fig. [3). For the graph H’, if we set X = {u1,uz,vq,;,v,,,v,, } for each
a; and connect X; and X;41 by an edge, we can construct a path decomposition of Wldth at most
4. Also, it is easy to show that H' is a series-parallel graph, and hence the treewidth of H' is 2.

In the following, we show that there exists a partition (A;, A2) such that Y, ., a =3 4 a
W/2 if and only if there exists a partition P’ in H' such that min,ey gy up: (v) = W/2.

Given a partition (A, Ag) of A such that >, a =3, a=W/2, weset Va, = {v, €
Valae A}, Vi ={v, € Vi |a€ A}, and Vi = {v] € Vi | a € A} fori € {1,2}. Let
P ={Va, UV} UV U{ui}, Va, UV, UV U{uz}} be a partition in H'. By the definition of
H', we have up(v) = W/2 for every v € V(H’).

Conversely, we are given a partition P such that min,cy gy up:(v) = W/2. If P has a coalition
that contains both u; and wueo, the utilities of u; and us are less than 0. Thus, we suppose that
there are two coalitions C1, C3 in P such that u; € Cy and ug € Csy. For each a € A, if v,, v}, and
v” belong to a different coalition from the other two, the utility of each is strictly less than W/2.
Moreover, if v, € V4 belongs to neither C; nor Cs, up(v,) < W/2. Thus, v,, v}, and v/ belong to
the same coalition of either Cy or Cs.

Since the utilities of uy and uy are W/2, it holds that }_, c n(y)) Wuro = 2pe N(uy) Wuzo = W/2.
Therefore, if we set A; = {a € A | v, € N(u;)}, (A1, A2) is a partition satisfying >
ZaeAz a= W/2

acA, @ =
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Note that the pathwidth and the treewidth of H' are bounded, but the vertex cover number is
not bounded. We can similarly show that MAX EGALITARIAN is also weakly NP-hard on bounded
vertex cover number graphs by using the reduced graph H” in Fig.

Theorem 6. MAX EGALITARIAN is weakly NP-hard on 2-apex graphs of vertex cover number 4
even if the preferences are symmetric.

Proof. We give a reduction from PARITION as in the proof of Theorem 4] Without loss of generality,
we suppose a,, < W/2. To show this, we modify the graph H’ in Theorem 4l We add two super
vertices ug and uy connecting to all vertices in V4, respectively. For each edge {a;,u;} where
ie{l,...,n} and j € {3,4}, we set the weight wg,,, = W/2 —a;. Let H" be the constructed
graph (see Fig. . We can observe that H” is a 2-apex graph because a graph obtained from H”
by deleting us, ug is planar. Moreover, {u1,ug, u3, us} is a vertex cover of size four in H”.

Then, we show that there exists a partition (A1, A2) such that >° ., a =>4 a=W/2if
and only if there exists a partition 7 in H” such that min,cy (g up(v) = W/2.

Given a partition (A, Az) of A such that > 4 a =3, a=W/2, weset Vi, = {v, €
Valae A} for i € {1,2}. Let P = {Va, U{ui,us}, Va, U {ug,usa}} be a partition in H”.
By the definition of H’, we have up(v) = W/2 for every v € V(H’). For j € {1,2}, it holds
that up(u;) = > ,cq,@ = W/2. Since a, < W/2, it holds that |A;[,[A2] = 2 and then we
have up(uj) > W/2. Moreover, since any v, has either u; and uz or us and uy as neighbors,
up(vg) = W/2 holds.

Conversely, we are given a partition P such that min,cy g~ up(v) = W/2. If P has a coalition
that contains both u; and wus, the utilities of u; and us are less than 0. We suppose that there are
two coalitions C7, Cy in P such that u; € C7 and uy € Cs.

Since the utilities of u; and up are W/2, it holds that }-, c n(uy) Wuro = 2 pe N(uy) Wuzo = W/2.
Therefore, if we set A; = {a € A | va € N(w;)}, (A1, A2) is a partition satisfying >° 4 a =
Y aca, @ = W/2. Note that N(u1) = N(uz) C Va. O

Aziz et al. show that asymmetric MAX EGALITARIAN is strongly NP-hard [4]. We show that
symmetric MAX ENVY-FREE and symmetric MAX EGALITARIAN remain to be strongly NP-hard.
To show this, we give a reduction from 3-PARTITION, which is strongly NP-complete |15].

Theorem 7. MAX ENVY-FREE and MAX EGALITARIAN are strongly NP-hard even if the preferences
are symmetric.

Proof. We first explain a reduction for MAX ENVY-FREE. For H in Theorem 4] we set n = 3m.
Then we add m — 2 super vertices {ug, ..., u,} connecting to every vertex v,, in V4 by an edge of
weight a;. Moreover, we connect u, and u, with an edge of weight —mB for p,q € {1,...,m} and
p # q where B =3 _, a/n. Note that {uy,...,u,,} forms a clique. The number of vertices in the
constructed graph is m + 3m = 4m. It is easily seen that there is a partition (44,..., A,,) such
that |A4;] = B for each i if and only if there is an envy-free partition with social welfare at least
2mB in H as in the proof of Theorem [4].

Next, we explain a reduction for MAX EGALITARIAN. For H’ in Theorem [5| we set n = 3m. We
create m super vertices {us, ..., um,} connecting to every vertex v,, in V4 by an edge of weight a; in
H'. Moreover, we connect u, and u, with an edge of weight —mB for p,q € {1,...,m} and p # q.
Finally, we change the weights of {v,, v}, } and {vq,, vy, } to B/2—a;/2 and the weight of {v_, vy,
to B/2 + a;/2. Then we can observe that there is a partition (A, ..., A,,) such that |A;| = B for
each 7 if and only if there is a partition partition in H’ such that min,cy g/ up/(v) = B as in the
proof of Theorem O

Since tw(G) < ve(G), MAX ENVY-FREE is weakly NP-hard on graphs of tw(G) = 2 by Theorem
Also, MAX ECALITARIAN is weakly NP-hard on graphs of tw(G) = 2 by Theorem 5] However, we
show that symmetric MAX ENVY-FREE and symmetric MAX EGALITARIAN on trees, which are of
treewidth 1, are solvable in linear time. Indeed, we can find an envy-free and maximum egalitarian
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partition with maximum social welfare. Such a partition consists of connected components of a
forest obtained by removing all negative edges from an input tree.

Theorem 8. Symmetric MAX ENVY-FREE and symmetric MAX EGALITARIAN are solvable in
linear time on trees.

Note that linear-time solvability does not hold for asymmetric cases, though asymmetric Max
Egalitarian on trees can be solved in near-linear time.

Theorem 9. MAX EGALITARIAN can be solved in time O(nlog W) on trees.

Proof. In this proof, we design an algorithm for MAX EGALITARIAN on trees with self-loops, which
is a slightly wider class of graphs. Given a tree T" with self-loops and a non-negative value W, our
algorithm determines whether there exists a partition of T such that the utility of every agent is at
least W in linear time. The idea is that we can immediately answer “No” by focusing on a leaf, or
we can reduce the given T to a smaller tree T’ with self-loops whose answer is equivalent to the
one for T.

Given a tree T, we consider a leaf u and its adjacent vertex v. Let w(v), w(u,v) and w(v,u) be
the weights of self-loop of v, edges (u,v) and (v, u), respectively. We consider the following four
cases: (i) w(u) < W and w(u) + w(u,v) < W hold, (ii) w(u) < W and w(u) + w(u,v) > W hold,
(iii) w(u) > W and w(u) + w(u,v) < W hold, and (iv) w(u) > W and w(u) + w(u,v) > W hold.
In case (i), u can be isolated or can be with v, but in any cases, u’s utility is smaller than W; the
answer is obviously “No”. In case (ii), in order to give u utility at least W, u and v should belong
to a same coalition, which implies that v receives utility w(v,u). This can be interpreted that u is
contracted into v and the weight of self-loop (v, v) is updated to w(v) + w(v,w). In case (iii), in
order to guarantee at least W utility for u, u should be isolated. Then, we simply consider the
problem for 7" obtained from T by deleting u. In case (iv), u can have utility at least W whichever
u belongs to a same coalition with v. We then consider two subcases: (iv-1) w(v,u) > 0 and (iv-2)
w(v,u) <0 (if w(v,u) = 0, u does not affect the partition. We can ignore v). If (iv-1), v can reserve
utility w(v,w) by belonging to a same coalition with u; we can apply the same argument with (ii).
If (iv-2), it is better that v does not belong to a same coalition with u; we can apply the same
argument with (iii).

By the above observation, we can immediately say “No”, or obtain 77 with one smaller vertices.
Since the above check can be done in O(1), the decision problem can be done in O(n) time, where
n is the number of vertices. By applying the binary search, we can obtain a maximum egalitarian
partition. O

Theorems ] and [f] mean that MAX EGALITARIAN is weakly NP-hard even on bounded treewidth
graphs. On the other hand, we show that there is a pseudo FPT algorithm for MAX EGALITARIAN
when parameterized by treewidth.

Theorem 10. Given a tree decomposition of width tw, MAX EGALITARIAN can be solvable in time
(twW) O where W = max, cy > veN () [Wuol-

Proof. Let V; be the set of vertices in X; or the descent of X; on a tree decomposition. Then we
define DP tables of our dynamic programming.

Let P; be a partition of X; and u; be a | X;|-dimensional vector whose elements take from —W
to W, called a utility vector of X;. For v € X;, the element u;(v) represents the utility of v in G[V;].
Finally, we define A;[P;, u;] for each bag X; by using P; and u; as the maximum minimum utility
of an agent in V; \ X; in G[V;]. The value of A,[), @] is an optimal value for MAX EGALITARIAN
in G. In the following, we define the recursive formulas for computing A;[P;,u;] on a nice tree
decomposition.

Leaf node: We initialize DP tables for each leaf node i as A;[0,0] = W + 1. Note that the

maximum minimum utility is at most W and once we execute the recursive formula in a forget
node, A4;[P;,u;] becomes at most W.

12



Introduce vertex v node: Let C, € P; be a coalition that contains v in an introduce v node 1.
Note that C,, may contain only v, that is, C;, = {v}. In an introduce v node, an agent v is added to a
coalition. This changes the utilities of agents in C,,. Also, the utility of v in G[V;] is the sum of weight
of edges between v and agents in C,. Since every agent in X; also appears in X;, the maximum
minimum utility of an agent in V; \ X; in G[V;] does not change. Therefore, we define the recursive
formula as follows: A;[P;, w;] = A,[P;,u;], where P; = P; \ {C, }U{C, \ {v}}, u;j(u) = u;(u) — wyy
for u € €y \ {v}, uj(u) = u;(u) for other w's in X; \ {v}, and 3_, ¢ y()nc, Wou = Wi(v). Otherwise,
we define 4;[P;,u;] = —oo as an invalid case.

Forget v node: In a forget v node, if a vertex v is forgotten, it never appears in X; and its
ancestors on the decomposition tree. This implies that the utility of v does not change hereafter.
Namely, the maximum minimum utility among forgotten agent is stored in A;[P;, u;] in some sense.
Thus what we need to do here is to update the minimum by comparing the previous maximum
minimum utility with the utility of the newly forgotten agent, which can be the new minimum.
Taking the maximum among P; and u;, this can be interpreted as the following recursive formula:
A;lPi, wi] = max min{A4;[P;, w;], u;(v)},
J:2

where u;(u) = u;(u) for w € X; and P; \ {C,} U{C, \ {v}} = P;. The condition P; \ {C,} U{C, \
{v}} = P; means that the coalition to which an agent belongs in node j is the same as the coalition
to which an agent belongs in node 1.

Join node: For two children ji,j» of a join node 4, it holds that X; = X;, = Xj,. To update
A;[Pi,w;] in a join node, we first take the minimum of Aj, [P;,u;,] and A4;,[P;,u;,]. Note that
the maximum minimum utility among forgotten agent until X; is the minimum of ones until the
children nodes. Here, for every agent v € X;, u;(v) = uy, (v) + 1, (v) = X2,e n(w)nc, Wou Must hold.
The subtraction avoids the double counting of edges. Then taking the maximum among u;, and
u;, satisfying the above condition, the recursive formula can be defined as follows:

AilPi,w;] =  max  min{Ay, [P;,u;,], 4, [Pi, uj,]},

) C—w
uj; +uj,=u;

where each element uj(v) of uj is defined as uj(v) = ui(v) = X2, e n()nc, Wou-

Since the size of a DP table of each bag is (twWW)?(™) and each recursive formula can be
computed in time (twW )W) the total running time is (tw¥)9 W, O

Theorem [10| implies that if W is bounded by a polynomial in n, MAX EGALITARIAN can be
computed in time n©tW),
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