
Computational Complexity of Hedonic Games

on Sparse Graphs∗

Tesshu Hanaka1, Hironori Kiya2, Yasuhide Maei2, and Hirotaka Ono2

1Chuo University, Tokyo, Japan
2Nagoya University, Nagoya, Japan

Abstract

The additively separable hedonic game (ASHG) is a model of coalition formation games on
graphs. In this paper, we intensively and extensively investigate the computational complexity
of finding several desirable solutions, such as a Nash stable solution, a maximum utilitarian
solution, and a maximum egalitarian solution in ASHGs on sparse graphs including bounded-
degree graphs, bounded-treewidth graphs, and near-planar graphs. For example, we show
that finding a maximum egalitarian solution is weakly NP-hard even on graphs of treewidth
2, whereas it can be solvable in polynomial time on trees. Moreover, we give a pseudo fixed
parameter algorithm when parameterized by treewidth.

1 Introduction

In this paper, we investigate the computational complexity of additively separable hedonic games
on sparse graphs from the viewpoint of several solution concepts.

Given the set of agents, the coalition formation game is a model of finding a partition of the
set of agents into subsets under a certain criterion, where each of the subsets is called a coalition.
Such a partition is called a coalition structure. The hedonic game is a variant of coalition formation
games, where each agent has the utility associated with his/her joining coalition. In the typical
setting, if an agent belongs to a coalition where his/her favorite agents also belong to, his/her
utility is high and he/she feels comfortable. Contrarily, if he/she does not like many members in
the coalition, his/her utility must be low; since he/she feels uncomfortable, he/she would like to
move to another coalition. Although the model of hedonic games is very simple, it is useful to
represent many practical situations, such as formation of research team [2], formation of coalition
government [19], clustering in social networks [3,20,21], multi-agent distributed task assignment [23],
and so on.

The additively separable hedonic game (ASHG) is a class of hedonic games, where the utility
forms an additively separable function. In ASHG, an agent has a certain valuation for each of the
agents, which represents his/her preference. The valuation could be positive, negative or 0. If the
valuation of agent u for agent v is positive, agent u prefers agent v, and if it is negative, agent u
does not prefer agent v. If it is 0, agent u has no interest for agent v. The utility of agent u for
u’s joining coalition C is defined by the sum of valuations of agent u for other agents in C. This
setting is considered not very but reasonably general. Due to this definition, it can be also defined
by an edge-weighted directed graph, where the weight of edge (u, v) represents the valuation of u
to v. If a valuation is 0, we can remove the corresponding edge. Note that the undirected setting

∗This work was partially supported by JSPS KAKENHI Grant Numbers JP17K19960, 17H01698, 19K21537.

1

ar
X

iv
:1

90
8.

11
55

4v
2

 [
cs

.C
C

]
 2

2
O

ct
 2

01
9

is possible, and in the case the valuations are symmetric; the valuation of agent u for agent v is
always equal to the one of agent v for agent u.

In the study of hedonic games, several solution concepts are considered important and well
investigated. One of the most natural solution concepts is maximum utilitarian, which is so-called
a global optimal solution; it is a coalition structure that maximizes the total sum of the utilities
of all the agents. The total sum of the utilities is also called social welfare. Another concept of
a global optimal solution is maximum egalitarian. It maximizes the minimum utility of an agent
among all the agents. That is, it makes the unhappiest agent as happy as possible. Nash-stability,
envy-free and max envy-free are more personalized concepts of the solutions. A coalition structure
is called Nash-stable if no agent has an incentive to move to another coalition from the current
joining coalition. Such an incentive to move to another coalition is also called a deviation. Agent
u feels envious of v if u can increase his/her utility by exchanging the coalitions of u and v. A
coalition structure is envy-free if any agent does not envy any other agent. Furthermore, the best
one among the envy-free coalition structures is also meaningful; it is an envy-free coalition structure
with maximum social welfare. Some other concepts are also considered, though we focus on these
concepts in this paper.

Of course, it is not trivial to find a coalition structure satisfying above mentioned solution
concepts. Ballester studies the computational complexity for finding coalition structures of several
concepts including the above mentioned ones [5]. More precisely, he shows that determining whether
there is a Nash stable, an individually stable, and a core stable coalition structure is NP-complete.
In [24], Sung and Dimitrov show that the same results hold for ASHG. Aziz et al. investigate the
computational complexity for many concepts including the above five solution concepts [4]. In
summary, ASHG is unfortunately NP-hard for the above five solution concepts. These hardness
results are however proven without any assumption about graph structures. For example, some of
the proofs suppose that graphs are weighted complete graphs. This might be a problem, because
graphs appearing in ASHGs for practical applications are so-called social networks; they are far
from weighted complete graphs and known to be rather sparse or tree-like [1, 11]. What if we
restrict the input graphs of ASHG to sparse graphs? This is the motivation of this research.

In this paper, we investigate the computational complexity of ASHG on sparse graphs from
the above five solution concepts. The sparsity that we consider in this paper is as follows: graphs
with bounded degree, graphs with bounded treewidth and near-planar graphs. The degree is a
very natural parameter that characterizes the sparsity of graphs. In social networks, the degree
represents the number of friends, which is usually much smaller than the size of network. The
treewidth is a parameter that represents how tree-like a graph is. As Adcock, Sullivan and Mahoney
pointed out in [1], many large social and information networks have tree-like structures, which
implies the significance to investigate the computational complexity of ASHG on graphs with
bounded treewidth. Near-planar graphs here are p-apex graphs. A graph G is said to be p-apex if G
becomes planar after deleting p vertices or fewer vertices. Near-planarity is less important than the
former two in the context of social networks, though it also has many practical applications such as
transportation networks. Note that all of these sparsity concepts are represented by parameters, i.e.,
treewidth, maximum degree and p-apex. In that sense, we consider the parameterized complexity
of ASHG of several solution concepts in this paper.

This is not the first work that focuses on the parameterized complexity of ASHG. Peters presents
that Nash-stable, Maximum Utilitarian, Maximum Egalitarian and Envy-free coalition structures
can be computed in 2tw∆2

nO(1) time, where tw is the treewidth and ∆ is the maximum degree of
an input graph [22]. In other word, it is fixed parameter tractable (FPT) with respect to treewidth
and maximum degree. This implies that if both of the treewidth and the maximum degree are
small, we can efficiently find desirable coalition structures. This result raises the following natural
question: is finding these desirable coalition structures still FPT when parameterized by either the
treewidth or the maximum degree?

This paper answers the question from various viewpoints. Different from the case parameterized
by treewidth and maximum degree, the time complexity varies depending on the solution concepts.

2

Table 1: Complexity of ASHGs

Concept Time complexity to compute Reference
Nash stable NP-hard [24]

PLS-complete (symm) [14]
PLS-complete (symm, ∆ = 7) [Th.1]

twO(tw)n (symm, FPT by treewidth) [Cor.1]
Max Utilitarian strongly NP-hard (symm) [4]

strongly NP-hard (symm, 3-apex) [Th.2]

twO(tw)n (FPT by treewidth) [Th.3]
Max Egalitarian strongly NP-hard [4]

weakly NP-hard (symm, 2-apex, vc = 4) [Th.6]
weakly NP-hard (symm, planar, pw = 4, tw = 2) [Th.5]
strongly NP-hard (symm) [Th.7]
linear (symm, tree) [Th.8]
P (tree) [Th.9]
(twW)O(tw)n (pseudo FPT by treewidth) [Th.10]

Envy-free trivial [4]
Max Envy-free weakly NP-hard (symm, planar, vc = 2, tw = 2) [Th.4]

strongly NP-hard (symm) [Th.7]
linear (symm, tree) [Th.8]

For example, we can compute a maximum utilitarian coalition structure in twO(tw)n time, whereas
computing a maximum egalitarian coalition structure is weakly NP-hard even for graphs with
treewidth at most 2. Some other results of ours are summarized in Table 1.1. For more details, see
Section 1.1. Also some related results are summarized in Section 1.2.

1.1 Our contribution

We first study (symmetric) Nash stable on bounded degree graphs. We show that the problem is
PLS-complete even on graphs with maximum degree 7. PLS is a complexity class of a pair of an
optimization problem and a local search for it. It is originally introduced to capture the difficulty
of finding a locally optimal solution of an optimization problem. In the context of hedonic games, a
deviation corresponds to an improvement in local search, and thus PLS or PLS-completeness is
also used to model the difficulty of finding a stable solution.

We next show that Max Utilitarian is strongly NP-hard on 3-apex graphs, whereas it can
be solved in time twO(tw)n, and hence it is FPT when parameterized by treewidth tw. For Max
Envy-free , we show that the problem is weakly NP-hard on series-parallel graphs with vertex
cover number at most 2 whereas finding an envy-free partition is trivial [4].

Finally, we investigate the computational complexity of Max Egalitarian. We show that
Max Egalitarian is weakly NP-hard on 2-apex graphs with vertex cover number at most 4 and
planer graphs with pathwidth at most 4 and treewidth at most 2. Moreover, we show that Max
Egalitarian and Max Envy-free are strongly NP-hard even if the preferences are symmetric. In
contrast, an egalitarian and envy-free partition with maximum social welfare can be found in linear
time on trees if the preferences are symmetric. Moreover, Max Egalitarian can be computed in
polynomial time even if the preferences are asymmetric. In the end of this paper, we give a pseudo
FPT algorithm when parameterized by treewidth.

3

1.2 Related work

The coalition formation game is first introduced by Dreze and Greenber [10] in the field of
Economics. Based on the concept of coalition formation games, Banerjee, Konishi and Sönmez [6]
and Bogomolnaia and Jackson [7] study some stability and core concepts on hedonic games. For the
computational complexity on hedonic games, Ballester shows that finding several coalition structures
including Nash stable, core stable, and individually stable coalition structures is NP-complete [5].
For ASHGs, Aziz et al. investigate the computational complexity of finding several desirable
coalition structures [4]. Gairing and Savani [14] show that computing a Nash stable coalition
structure is PLS-complete in symmetric AGHGs whereas Bogomolnaia and Jackson [7] prove that
a Nash stable coalition structure always exists. In [22], Peters designs parameterized algorithms for
computing some coalition structures on hedonic games with respect to treewidth and maximum
degree.

2 Preliminaries

In this paper, we use the standard graph notations. For G = (V,E), we define n = |V | and
m = |E|. For V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. We denote the closed
neighbourhood and the open neighbourhood of a vertex v by N [v] and N(v), respectively. The
degree of v is denoted by d(v). Moreover, the maximum degree of G is denoted by ∆(G). For
simplicity, we sometimes omit the subscript G.

2.1 Hedonic game

An additively separable hedonic game (ASHG) is defined on a directed edge-weighted graph G =
(V,E,w). Each vertex v ∈ V is called an agent. The weight of an edge e = (u, v), denoted by we or
wuv, represents the valuation of u to v. An ASHG is said to be symmetric if wuv = wvu holds for
any pair of u and v. Any symmetric ASHG can be defined on an undirected edge-weighted graph.
We denote an undirected edge by {u, v}. Note that any edge of weight 0 is removed from a graph.

Let P be a partition of V . Then C ∈ P is called a coalition. We denote by Cu ∈ P the coalition to
which an agent u ∈ V belongs under P , and by E(Cu) the set of edges {(u, v)∪ (v, u) ∈ E | v ∈ Cu}.
In ASHGs, the utility of an agent u under P is defined as uP(u) =

∑
v∈N(u)∩Cu

wuv, which is the
sum of weights of edges from u to other agents in the same coalition. Also, the social welfare of
P is defined as the sum of utilities of all agents under P. Note that the social welfare equals to
exactly twice the sum of weights of edges in coalitions.

Next, we define several concepts of desirable solution in ASHGs.

Definition 1 (Nash-stable). A partition P is Nash-stable if there exists no agent u and coalition
C ′ 6= Cu containing u, possibly empty, such that∑

v∈N(u)∩Cu

wuv <
∑

v∈N(u)∩C′

wuv.

As an important fact, in any symmetric ASHG, a partition with maximum social welfare is
Nash-stable by using the potential function argument [7].

Proposition 1. In any symmetric ASHG, a partition with maximum social welfare is Nash-stable.

Thus, if we can compute a partition with maximum social welfare in a symmetric ASHG, then
we also obtain a Nash-stable partition.

Definition 2 (Envy-free). We say an agent u1 ∈ Cu1 envies u2 ∈ Cu2 if the following inequality
holds: ∑

v∈N(u1)∩Cu1

wu1v <
∑

v∈N(u1)∩(Cu2
\{u2}∪{u1})

wu1v.

4

That is, u1 envies u2 if the utility of u1 increases by replacing u2 by u1. A partition P is envy-free
if any agent does not envy an agent.

Nash-stable, Envy-free, Max Envy-free, Max Utilitarian, and Max Egalitarian
are the following problems: Given a weighted graph G = (V,E,w), find a Nash-stable partition, an
envy-free partition, an envy-free partition with maximum social welfare, a maximum utilitarian
partition, and a maximum egalitarian partition, respectively.

2.2 Graph classes

A planar graph is a graph that can be drawn on the plane in such a way that its edges intersect only
at their endpoints. For p ≥ 1, a p-apex graph is a graph that can be planar by removing p vertices
or fewer vertices from it. Note that a planar graph is a p-apex graph for any p ≥ 1. A graph G is
called series-parallel if every 2-connected component of G can be constructed by applying series
operation and parallel operation compositions recursively: The series operation entails subdividing
an edge by a new vertex (replacing an edge by two edges in series). The parallel operation entails
replacing an edge by two edges in parallel. It is well-known that a series-parallel graph is planar,
and the class of series-parallel graph is equivalent to graphs with treewidth 2.

2.3 Graph parameters and parameterized complexity

For the basic definitions of parameterized complexity, such as the classes FPT and XP, refer to [8].

Definition 3 (Tree decomposition). A tree decomposition of an undirected graph G = (V,E) is
defined as a pair 〈X , T 〉, where X = {X1, X2, . . . , XN ⊆ V }, and T is a tree whose nodes are labeled
by I ∈ {1, 2, . . . , N}, such that

1.
⋃

i∈I Xi = V ,

2. For all {u, v} ∈ E, there exists an Xi such that {u, v} ⊆ Xi,

3. For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

Here, Xi is called a bag. The width of a tree decomposition is defined as mini∈I |Xi| − 1, that
is, minimum size of a bag minus one. Furthermore, the treewidth of G, denoted by tw(G), is
minimum possible width of a tree decomposition of G. A tree decomposition 〈X , T 〉 is called a path
decomposition if T is a path. The pathwidth of G, denoted by pw(G), is minimum possible width
of a path decomposition of G.

We introduce a special type of tree decomposition, a nice tree decomposition, introduced by
Kloks [18]. It is a special binary tree decomposition which has four types of nodes, named leaf,
introduce vertex, forget and join. In [8, 9], Cygan et al. added a fifth type, the introduce edge node.

Definition 4 (Nice tree decomposition). A tree decomposition 〈X , T 〉 is called a nice tree decom-
position if it satisfies the following:

1. T is rooted at a designated node r ∈ I satisfying |Xr| = 0, called the root node,

2. Each node of the tree T has at most two children,

3. Each node in T has one of the following five types:

• A leaf node i which has no children and its bag Xi satisfies |Xi| = 0,

• An introduce vertex node i has one child j with Xi = Xj ∪ {v} for a vertex v ∈ V ,

• An introduce edge node i has one child j and labeled with an edge (u, v) ∈ E where
u, v ∈ Xi = Xj,

5

• A forget node i has one child j and satisfies Xi = Xj \ {v} for a vertex v ∈ V ,

• A join node i has two children nodes j1, j2 and satisfies Xi = Xj1 = Xj2 .

Any tree decomposition of width ω can be transformed into a nice tree decomposition of ω with
O(n) nodes in linear time [8].

A vertex cover S is the set of vertices such that every edge has at least one vertex in S. The
size of minimum vertex cover in G is called vertex cover number, denoted by vc(G). The following
proposition is a well-known relationship between treewidth, pathwidth, and vertex cover number.

Proposition 2. For any graph G, it holds that tw(G) ≤ pw(G) ≤ vc(G).

In [13], Fomin and Thilikos proved that for any planar graph G, tw(G) ≤ 3.183
√
n− 1 and a

tree decomposition of such width can be computed in polynomial time. Using this fact, we obtain
the following proposition for p-apex graphs.

Proposition 3. Let p be some constant. For any p-apex graph G, tw(G) ≤ 3.183
√
n + p − 1.

Moreover, a tree decomposition of such width can be computed in polynomial time.

Proof. In [13], Fomin and Thilikos proved that for any planar graph G, tw(G) ≤ 3.183
√
n− 1 and

a tree decomposition of such width can be computed in polynomial time. Thus, we first guess p
vertices such that G becomes planar by deleting them. Since we can check whether a graph is
planar in time O(n2) [17], this can be done in polynomial time by using the brute forth. Now,
we have a planar graph G′ obtained from G by deleting such p vertices. Then we compute a tree
decomposition of width tw(G′) ≤ 3.183

√
n− 1 in polynomial time. Finally, we add p vertices in

V (G) \ V (G′) to each bag of a tree decomposition. The width of such a tree decomposition of G is
clearly at most 3.183

√
n + p− 1.

Proposition 3 implies that there is a 2O(
√
n log n)-time algorithm for any p-apex graph if there

is a twO(tw)-time or even an nO(tw)-time algorithm. Therefore, Max Utilitarian and Max
Egalitarian with restricted weights can be solved in time 2O(

√
n log n) on p-apex graphs from

Theorems 3 and 10.

2.4 Problem list

In this subsection, we list problems used for the proofs in this paper.

• Max k-Cut: Given an undirected and edge-weighted graph G = (V,E,w), find a partition
(V1, V2, . . . , Vk) that maximizes

∑
u1∈Vi,u2∈Vj ,Vi 6=Vj

wu1u2 . Max 2-Cut is known as Max-
Cut.

• k-Coloring: Given an undirected graph G = (V,E), determine whether there is a coloring
c : V → {1, . . . , k} such that c(u) 6= c(v) for every (u, v) ∈ E.

• Partition: Given a finite set of integers A = {a1, a2, . . . , an} and W =
∑n

i=1 ai, determine
whether there is partition (A1, A2) of A where A1 ∪A2 = A and

∑
a∈A1

a =
∑

a∈A2
a = W/2.

• 3-Partition: Given a finite set of integers A = {a1, . . . , a3n}, determine whether there is
partition (A1, . . . , An) such that |Ai| = 3 and

∑
a∈Ai

a = B for each i where B =
∑

a∈A a/n.

3 Nash-stable

Any symmetric ASHG always has a Nash-stable partition by Proposition 1. However, finding
a Nash-stable solution is PLS-complete [14]. In this section, we prove that Nash-Stable is
PLS-complete even on bounded degree graphs.

6

⋯ ⋯

G
<latexit sha1_base64="RkawAS0Tiju+YpKT/Q7DBt9bPRY=">AAACZHichVHLSsNAFD2Nr1qrVosgCFIsiqtyI4LiSnShS2vtA2opSRw1mCYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AhJXd09vX3h/shAdHBoODYymnOtqqOJrGYZllNQFVcYuimynu4ZomA7QqmohsirB6ut/XxNOK5umVveoS1KFWXP1Hd1TfGYSq+VY0lKkR+JTiAHIIkgNqzYLbaxAwsaqqhAwITH2IACl1sRMgg2cyXUmXMY6f6+wDEirK1yluAMhdkDHvd4VQxYk9etmq6v1vgUg7vDygSm6YnuqEmPdE8v9PFrrbpfo+XlkGe1rRV2efhkPPP+r6rCs4f9L9Wfnj3sYtH3qrN322dat9Da+trRRTOztDldn6FremX/V9SgB76BWXvTbtJi8xIR/gD553N3gtxcSqaUnJ5PLq8EXxHGBKYwy++9gGWsYwNZPlfgFGc4Dz1LUSkujbVTpVCgieNbSJOflEyJxw==</latexit><latexit sha1_base64="RkawAS0Tiju+YpKT/Q7DBt9bPRY=">AAACZHichVHLSsNAFD2Nr1qrVosgCFIsiqtyI4LiSnShS2vtA2opSRw1mCYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AhJXd09vX3h/shAdHBoODYymnOtqqOJrGYZllNQFVcYuimynu4ZomA7QqmohsirB6ut/XxNOK5umVveoS1KFWXP1Hd1TfGYSq+VY0lKkR+JTiAHIIkgNqzYLbaxAwsaqqhAwITH2IACl1sRMgg2cyXUmXMY6f6+wDEirK1yluAMhdkDHvd4VQxYk9etmq6v1vgUg7vDygSm6YnuqEmPdE8v9PFrrbpfo+XlkGe1rRV2efhkPPP+r6rCs4f9L9Wfnj3sYtH3qrN322dat9Da+trRRTOztDldn6FremX/V9SgB76BWXvTbtJi8xIR/gD553N3gtxcSqaUnJ5PLq8EXxHGBKYwy++9gGWsYwNZPlfgFGc4Dz1LUSkujbVTpVCgieNbSJOflEyJxw==</latexit><latexit sha1_base64="RkawAS0Tiju+YpKT/Q7DBt9bPRY=">AAACZHichVHLSsNAFD2Nr1qrVosgCFIsiqtyI4LiSnShS2vtA2opSRw1mCYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AhJXd09vX3h/shAdHBoODYymnOtqqOJrGYZllNQFVcYuimynu4ZomA7QqmohsirB6ut/XxNOK5umVveoS1KFWXP1Hd1TfGYSq+VY0lKkR+JTiAHIIkgNqzYLbaxAwsaqqhAwITH2IACl1sRMgg2cyXUmXMY6f6+wDEirK1yluAMhdkDHvd4VQxYk9etmq6v1vgUg7vDygSm6YnuqEmPdE8v9PFrrbpfo+XlkGe1rRV2efhkPPP+r6rCs4f9L9Wfnj3sYtH3qrN322dat9Da+trRRTOztDldn6FremX/V9SgB76BWXvTbtJi8xIR/gD553N3gtxcSqaUnJ5PLq8EXxHGBKYwy++9gGWsYwNZPlfgFGc4Dz1LUSkujbVTpVCgieNbSJOflEyJxw==</latexit><latexit sha1_base64="RkawAS0Tiju+YpKT/Q7DBt9bPRY=">AAACZHichVHLSsNAFD2Nr1qrVosgCFIsiqtyI4LiSnShS2vtA2opSRw1mCYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AhJXd09vX3h/shAdHBoODYymnOtqqOJrGYZllNQFVcYuimynu4ZomA7QqmohsirB6ut/XxNOK5umVveoS1KFWXP1Hd1TfGYSq+VY0lKkR+JTiAHIIkgNqzYLbaxAwsaqqhAwITH2IACl1sRMgg2cyXUmXMY6f6+wDEirK1yluAMhdkDHvd4VQxYk9etmq6v1vgUg7vDygSm6YnuqEmPdE8v9PFrrbpfo+XlkGe1rRV2efhkPPP+r6rCs4f9L9Wfnj3sYtH3qrN322dat9Da+trRRTOztDldn6FremX/V9SgB76BWXvTbtJi8xIR/gD553N3gtxcSqaUnJ5PLq8EXxHGBKYwy++9gGWsYwNZPlfgFGc4Dz1LUSkujbVTpVCgieNbSJOflEyJxw==</latexit>

W
<latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit>

W
<latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit>

W
<latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit> W

<latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit>

W
<latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit>

W
<latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit><latexit sha1_base64="YHfgEV26Ejpdb1oqvdtJums6Q0g=">AAACZHichVHLSsNAFD2Nr1ofrRZBEKRYKq7KjQiKK9GNS2vtA1QkidMamiYhSQta/AHdKi5cKYiIn+HGH3DRHxDEZQU3LrxNA6JFvcPMnDlzz50zM6pt6K5H1AxJPb19/QPhwcjQ8MhoNDY2nnetmqOJnGYZllNUFVcYuilynu4Zomg7QqmqhiiolbX2fqEuHFe3zC3v0Ba7VaVs6iVdUzymMoW9WJLS5EeiG8gBSCKIDSt2ix3sw4KGGqoQMOExNqDA5bYNGQSbuV00mHMY6f6+wDEirK1xluAMhdkKj2VebQesyet2TddXa3yKwd1hZQIpeqI7atEj3dMLffxaq+HXaHs55FntaIW9Fz2ZzL7/q6ry7OHgS/WnZw8lLPledfZu+0z7FlpHXz+6aGWXN1ONWbqmV/Z/RU164BuY9TftJiM2LxHhD5B/Pnc3yM+nZUrLmYXkymrwFWFMYQZz/N6LWME6NpDjcwVOcYbz0LM0LMWliU6qFAo0cXwLafoTtEyJ1w==</latexit>

�2M
<latexit sha1_base64="G/yMBDKlV+PsTahWsAA6hIS6FHo=">AAACZnichVG7SgNBFD1Z31GTqIiCTTAoNoa7IihWoo2NYBKjggbZXSdxyb7Y3QQ0+AOCrRZWCiLiZ9j4Axb5A8Uygo2FN5sF0aDeYWbOnLnnzpkZ1TF0zyeqR6SOzq7unt6+aP/AYCyeGBre8uyKq4m8Zhu2u6MqnjB0S+R93TfEjuMKxVQNsa2WV5v721XherptbfpHjiiYSsnSi7qm+EzlZufW9xMpSlMQyXYghyCFMDbsxC32cAAbGiowIWDBZ2xAgcdtFzIIDnMF1JhzGenBvsAJoqytcJbgDIXZMo8lXu2GrMXrZk0vUGt8isHdZWUSU/REd9SgR7qnF/r4tVYtqNH0csSz2tIKZz9+Op57/1dl8uzj8Ev1p2cfRSwGXnX27gRM8xZaS189vmjklrJTtWm6plf2f0V1euAbWNU37SYjspeI8gfIP5+7HWzNpWVKy5n51PJK+BW9mMAkZvi9F7CMNWwgz+eWcIZzXESepZg0Ko21UqVIqBnBt5CSn6mpikA=</latexit><latexit sha1_base64="G/yMBDKlV+PsTahWsAA6hIS6FHo=">AAACZnichVG7SgNBFD1Z31GTqIiCTTAoNoa7IihWoo2NYBKjggbZXSdxyb7Y3QQ0+AOCrRZWCiLiZ9j4Axb5A8Uygo2FN5sF0aDeYWbOnLnnzpkZ1TF0zyeqR6SOzq7unt6+aP/AYCyeGBre8uyKq4m8Zhu2u6MqnjB0S+R93TfEjuMKxVQNsa2WV5v721XherptbfpHjiiYSsnSi7qm+EzlZufW9xMpSlMQyXYghyCFMDbsxC32cAAbGiowIWDBZ2xAgcdtFzIIDnMF1JhzGenBvsAJoqytcJbgDIXZMo8lXu2GrMXrZk0vUGt8isHdZWUSU/REd9SgR7qnF/r4tVYtqNH0csSz2tIKZz9+Op57/1dl8uzj8Ev1p2cfRSwGXnX27gRM8xZaS189vmjklrJTtWm6plf2f0V1euAbWNU37SYjspeI8gfIP5+7HWzNpWVKy5n51PJK+BW9mMAkZvi9F7CMNWwgz+eWcIZzXESepZg0Ko21UqVIqBnBt5CSn6mpikA=</latexit><latexit sha1_base64="G/yMBDKlV+PsTahWsAA6hIS6FHo=">AAACZnichVG7SgNBFD1Z31GTqIiCTTAoNoa7IihWoo2NYBKjggbZXSdxyb7Y3QQ0+AOCrRZWCiLiZ9j4Axb5A8Uygo2FN5sF0aDeYWbOnLnnzpkZ1TF0zyeqR6SOzq7unt6+aP/AYCyeGBre8uyKq4m8Zhu2u6MqnjB0S+R93TfEjuMKxVQNsa2WV5v721XherptbfpHjiiYSsnSi7qm+EzlZufW9xMpSlMQyXYghyCFMDbsxC32cAAbGiowIWDBZ2xAgcdtFzIIDnMF1JhzGenBvsAJoqytcJbgDIXZMo8lXu2GrMXrZk0vUGt8isHdZWUSU/REd9SgR7qnF/r4tVYtqNH0csSz2tIKZz9+Op57/1dl8uzj8Ev1p2cfRSwGXnX27gRM8xZaS189vmjklrJTtWm6plf2f0V1euAbWNU37SYjspeI8gfIP5+7HWzNpWVKy5n51PJK+BW9mMAkZvi9F7CMNWwgz+eWcIZzXESepZg0Ko21UqVIqBnBt5CSn6mpikA=</latexit><latexit sha1_base64="G/yMBDKlV+PsTahWsAA6hIS6FHo=">AAACZnichVG7SgNBFD1Z31GTqIiCTTAoNoa7IihWoo2NYBKjggbZXSdxyb7Y3QQ0+AOCrRZWCiLiZ9j4Axb5A8Uygo2FN5sF0aDeYWbOnLnnzpkZ1TF0zyeqR6SOzq7unt6+aP/AYCyeGBre8uyKq4m8Zhu2u6MqnjB0S+R93TfEjuMKxVQNsa2WV5v721XherptbfpHjiiYSsnSi7qm+EzlZufW9xMpSlMQyXYghyCFMDbsxC32cAAbGiowIWDBZ2xAgcdtFzIIDnMF1JhzGenBvsAJoqytcJbgDIXZMo8lXu2GrMXrZk0vUGt8isHdZWUSU/REd9SgR7qnF/r4tVYtqNH0csSz2tIKZz9+Op57/1dl8uzj8Ev1p2cfRSwGXnX27gRM8xZaS189vmjklrJTtWm6plf2f0V1euAbWNU37SYjspeI8gfIP5+7HWzNpWVKy5n51PJK+BW9mMAkZvi9F7CMNWwgz+eWcIZzXESepZg0Ko21UqVIqBnBt5CSn6mpikA=</latexit>

PA PB
pB
1pB

2pB
npA

npA
2pA

1 pA
n+1 pB

n+1

Figure 1: The constructed graph G′ in the proof of Theorem 1.

Theorem 1. Symmetric Nash-stable is PLS-complete even on graphs with maximum degree
∆ = 7.

Proof. We give a reduction from Local Max-Cut with flip. Local Max-Cut is a local search
problem of Max-Cut. In the flip neighborhood, two solutions are neighbors if one can be obtained
from the other by moving one element to the other set. Local Max-Cut with flip is PLS-complete
on graphs with maximum degree ∆ = 5 [12].

Given an edge weighted graph G = (V,E,w), we construct G′ = (V ′, E′, w′) as follows. Let
W =

∑
e∈E |we| + 1 and M = nW + 1. First we set w′e = −we for every e ∈ E. Then we add

PA = {pA1 , . . . , pAn+1} and PB = {pB1 , . . . , pBn+1} that form paths of length n, respectively. For
1 ≤ i ≤ n, we define w′

pA
i pA

i+1
= w′

pB
i pB

i+1
= i(W + 1) as the weight of {pAi , pAi+1} and {pBi , pBi+1}. We

connect each pAi and pBi to vi ∈ V by an edge of weight W , respectively. Finally, we connect pAn+1

and pBn+1 by an edge of weight −3M . Note that PA ∪ PB forms a path of length 2n + 1. We can
observe that the degree of a vertex in V is at most 7 and in PA ∪ PB is at most 3.

In any Nash-stable partition in G′, pAn+1 and pBn+1 must be in different coalitions. If not so, the
utility of pAn+1 is at most −3M + n(W + 1)W < 0, and it has an incentive to deviate to a singleton
because the utility in a singleton is 0. Moreover, in any Nash-stable partition of G′, every vertex
in PA always belong to the same coalition. Otherwise, there is an agent pAi with utility at most
(i− 1)(W + 1) +W = i(W + 1)− 1. Then the utility of pAi can be increased to at least i(W + 1) by
deviating to the coalition to which pAi+1 belongs. Similarly, every vertex in PB always belong to the
same coalition in any Nash-stable partition of G′. Therefore, in any Nash-stable partition, there
exist a coalition CA containing all vertices included in PA and a coalition CB containing all vertices
included in PB . Furthermore, if a vertex in V does not belong to neither CA nor CB , the utility is
at most 0. Since the utility of the vertex in CA or CB is more than 0, it must belong to either CA

or CB . Thus, any Nash-stable partition P∗ in G′ has exactly two coalitions CA containing PA and
CB containing PB .

Here, we can observe that any Nash-stable partition in G′ is a local optimal solution of Local
Max-Cut in G. If not so, there is a vertex v ∈ V that can increase the weight of a cut in G by
flipping v from the current set to the other. In G′, such a vertex deviates to the other coalition
because the utility increases. Conversely, we are given a local optimal cut (C1, C2) of Local
Max-Cut. Then a partition (C1 ∪PA, C2 ∪PB) in G′ is a Nash-stable partition. This is because
any vertex in PA and PB does not deviate from the current coalition. Moreover, suppose that there
is a vertex v in C1 ∪C2 = V deviates to the other coalition to increase the utility. This implies that
there is a vertex v in G that increases the weight by flipping v. This contradicts the optimality of
(C1, C2).

7

4 Max Utilitarian

Theorem 2. Max Utilitarian is strongly NP-hard on 3-apex graphs even if the preferences are
symmetric.

Proof. Let G = (V,E) be an unweighted graph where |V | = n and |E| = m. We first confirm that
Max 3-Cut is NP-hard for planar graphs. This can be done by a reduction from 3-coloring on
planar graphs which is NP-complete [16]. If an unweighted graph G is 3-colorable, it is clear that
G has a 3-cut of size m because for every edge, its endpoints have different colors. On the other
hand, if an unweighted graph G has a 3-cut of size m, it is obviously 3-colorable.

Then we give a reduction from Max 3-Cut to Max Utilitarian. Given an unweighted planar
graph G = (V,E) of an instance of Max 3-Cut, we add three super vertices S = {s1, s2, s3} such
that and each si is connected to all vertices in G by three edges of weight m. Moreover, we connect
s1, s2, s3 to each other by edges of weight −6mn, and hence S forms a clique. Finally, for each edge
e ∈ E, we define the weight we = −1. Let G′ be the constructed graph.

In the following, we show that there is a 3-cut of size k in G if and only if there is a partition
P with social welfare 2(3mn −m + k). Given a 3-cut (V1, V2, V3) of size k in G, we construct a
partition P = {V1 ∪ {s1}, V2 ∪ {s2}, V3 ∪ {s3}}. Since the number of edges in E in coalitions is
m− k, any edge in G[S] is not contained in coalitions, and every edge between s ∈ S and v ∈ V is
contained in coalitions, the social welfare of P is 2(3mn−m + k).

Conversely, we are given a partition P of social welfare 2(3mn−m + k). If a coalition contains
at least two vertices in S, the social welfare is at most 6m − 6mn < 0. Thus, each si does not
belong to the same coalition. If there is v ∈ V that does not belong to a coalition containing
s ∈ S, then the social welfare is at most 2 · 3m(n− 1) = 6mn− 6m < 2(3mn−m + k). Hence, V
must be partitioned into three sets adjacent to either s1, s2 or s3. Since the social welfare of P is
2(3mn−m + k), every edge between s ∈ S and v ∈ V is contained in a coalition, and the weight of
an edge in E is −1, the number of edges in E in coalitions is m− k. This implies that there is a
3-cut of size k.

Theorem 3. Given a tree decomposition of width tw, Max Utilitarian can be solved in time
twO(tw)n.

Proof. Our algorithm is based on dynamic programming on a tree decomposition for connectivity
problems such as Steiner tree [8]. In our dynamic programming, we keep track of all the
partitions in each bag.

We define the recursive formulas for computing the social welfare of each partition P in the
subgraph based on a subtree of a tree decomposition. Let Pi be a partition of Xi. We denote by
Ai[Pi] the maximum social welfare in the subgraph Gi such that Xi is partitioned into Pi. Notice
that Ar[∅] in root node r is the maximum social welfare of G. We denote a parent node by i and
its child node by j. For a join node, we write j1 and j2 to denote its two children.

Leaf node: In leaf nodes, we set Ai[∅] = 0.

Introduce vertex v node: In an introduce vertex v node i, let Cv ∈ Pi be the coalition including
v. We notice that the social welfare is increased by edges between v and vertices in the coalition
including v. Thus, the recursive formula is defined as: Ai[Pi] = Aj [Pj] +

∑
u∈N(v)∩Cv

wuv +∑
u∈N(v)∩Cv

wvu where Pj = Pi \ {Cv} ∪ {Cv \ {v}}.

Forget v node: In a forget v node, we only take a partition with maximum social welfare when
we forget v because v does not affect the social welfare hereafter. Thus, the recursive formula is
defined as: Ai[Pi] = maxPj∈Dj Aj [Pj] where Dj = {Pj | Pj \ {Cv} ∪ {Cv \ {v}} = Pi}.

8

...

...
u1 u2

va1

va2

van�1

van

a1 a1

a2 a2

an�1 an�1

anan

�2W � 1

Figure 2: The constructed graph H.

Join node: A join node i has two child nodes j1, j2 where Xi = Xj1 = Xj2 . The social welfare of
each partition Xi is the sum of the corresponding partition of Xj1 = Xj2 . Therefore, the recursive
formula for a join node is defined as: Ai[Pi] = Aj1 [Pi] +Aj2 [Pi]−

∑
C∈Pi

∑
u,v∈C(wuv +wvu). The

last term means subtracting the double counting of edges.
Because the size of each DP table is twO(tw), we can compute the recursive formulas in time

twO(tw). As the result, the total running time is twO(tw)n.

By Proposition 1, symmetric Nash-stable is also solvable in time twO(tw)n.

Corollary 1. Given a tree decomposition of width tw, symmetric Nash-stable can be solved in
time twO(tw)n.

5 Max Envy-free and Max Egalitarian

In [4], Aziz et al. show that finding an envy-free partition is trivial because a partition of singletons
is envy-free. However, finding a maximum envy-free partition is much more difficult than finding
an envy-free partition.

Theorem 4. Max Envy-free is weakly NP-hard on series-parallel graphs of vertex cover number
2 even if the preferences are symmetric.

Proof. We give a reduction from Partition, which is weakly NP-complete [15]. Without loss of
generality, we suppose a1 ≤ a2 ≤ . . . ≤ an and an < W/2.

Given a set of positive integers A = {a1, a2, . . . , an}, we build the corresponding vertex set
VA = {va1

, va2
, . . . , van

}. Then we construct an edge-weighted complete bipartite graph K2,n =
(VA∪U,E) where U = {u1, u2}. For each edge {vai

, uj} ∈ E, we set the weight wvai
uj

= ai. Finally,
we add eu = {u1, u2} of weight −2W − 1. Let H = (VA ∪ U,E ∪ {eu}) be the constructed graph.
Note that H is a series parallel graph and vc(H) = 2 (see Fig. 2).

We show that an instance of Partition is a yes-instance if and only if there is an envy-free
partition with social welfare at least 2W in H.

Given a partition (A1, A2) of A such that
∑

a∈A1
a =

∑
a∈A2

a = W/2, let VA1
and VA2

be the
corresponding vertex set to A1 and A2, respectively. In short, VAi

= {va | a ∈ Ai} for i ∈ {1, 2}.
Let P = {VA1 ∪ {u1}, VA2 ∪ {u2}} be a partition in H. By the definition of H, we have uP(va) = a
for every va ∈ VA and uP(u) = W/2 for every u ∈ U . Let Ci = VAi ∪ {ui} for i ∈ {1, 2}. For an
agent va ∈ Ci, consider C ′i = Cj \ {w} ∪ {va} for any w ∈ Cj 6= Ci. In this case, the utility of va is
at most a. Moreover, consider C ′1 = C2 \ {w} ∪ {u1} for any w ∈ C2. Then the utility of u1 is at
most W/2. Therefore, P is envy-free. Also, the social welfare of P is W/2 + W/2 +

∑
a∈A a = 2W .

Conversely, we are given an envy-free partition P with social welfare at least 2W in H. If
P has a coalition that contains both u1 and u2, the social welfare of P is strictly less than 2W .

9

u1 u2

va1

van

a1

a1

anan

�2W � 1

W

4
� a1

2

W

4
� a1

2

W

4
+

a1

2

va1

v0a1 v00a1

...

Figure 3: The constructed graph H ′.

...

...
u1 u2

va1

van

a1

anan

a1

u3
<latexit sha1_base64="UHeGIw+WVb7fZTp5Gwd6WNQPzEw=">AAACZ3ichVG7SgNBFD1Z3/GRqCABm2iIWIW7KipWgo1lfCQRVMLuOjFL9sXuJqDBH7CwVbBSEBE/w8YfsPATgmUEGwvvbhZERb3DzJw5c8+dMzOqY+ieT/Qck7q6e3r7+gfig0PDI4nk6FjRs+uuJgqabdjujqp4wtAtUfB13xA7jisUUzVESa2tBfulhnA93ba2/SNH7JvKoaVXdE3xAypdL8+XkxnKURjpn0COQAZR5O3kLfZwABsa6jAhYMFnbECBx20XMggOc/toMucy0sN9gRPEWVvnLMEZCrM1Hg95tRuxFq+Dml6o1vgUg7vLyjSy9ER31KZHuqcWvf9aqxnWCLwc8ax2tMIpJ05TW2//qkyefVQ/VX969lHBcuhVZ+9OyAS30Dr6xvF5e2tlM9ucoWt6Yf9X9EwPfAOr8ardbIjNS8T5A+Tvz/0TFOdyMuXkjYXM6mL0Ff2YxDRm+b2XsIp15FHgc6s4wzkuYi0pIU1IqU6qFIs04/gS0tQHwp2KuQ==</latexit><latexit sha1_base64="UHeGIw+WVb7fZTp5Gwd6WNQPzEw=">AAACZ3ichVG7SgNBFD1Z3/GRqCABm2iIWIW7KipWgo1lfCQRVMLuOjFL9sXuJqDBH7CwVbBSEBE/w8YfsPATgmUEGwvvbhZERb3DzJw5c8+dMzOqY+ieT/Qck7q6e3r7+gfig0PDI4nk6FjRs+uuJgqabdjujqp4wtAtUfB13xA7jisUUzVESa2tBfulhnA93ba2/SNH7JvKoaVXdE3xAypdL8+XkxnKURjpn0COQAZR5O3kLfZwABsa6jAhYMFnbECBx20XMggOc/toMucy0sN9gRPEWVvnLMEZCrM1Hg95tRuxFq+Dml6o1vgUg7vLyjSy9ER31KZHuqcWvf9aqxnWCLwc8ax2tMIpJ05TW2//qkyefVQ/VX969lHBcuhVZ+9OyAS30Dr6xvF5e2tlM9ucoWt6Yf9X9EwPfAOr8ardbIjNS8T5A+Tvz/0TFOdyMuXkjYXM6mL0Ff2YxDRm+b2XsIp15FHgc6s4wzkuYi0pIU1IqU6qFIs04/gS0tQHwp2KuQ==</latexit><latexit sha1_base64="UHeGIw+WVb7fZTp5Gwd6WNQPzEw=">AAACZ3ichVG7SgNBFD1Z3/GRqCABm2iIWIW7KipWgo1lfCQRVMLuOjFL9sXuJqDBH7CwVbBSEBE/w8YfsPATgmUEGwvvbhZERb3DzJw5c8+dMzOqY+ieT/Qck7q6e3r7+gfig0PDI4nk6FjRs+uuJgqabdjujqp4wtAtUfB13xA7jisUUzVESa2tBfulhnA93ba2/SNH7JvKoaVXdE3xAypdL8+XkxnKURjpn0COQAZR5O3kLfZwABsa6jAhYMFnbECBx20XMggOc/toMucy0sN9gRPEWVvnLMEZCrM1Hg95tRuxFq+Dml6o1vgUg7vLyjSy9ER31KZHuqcWvf9aqxnWCLwc8ax2tMIpJ05TW2//qkyefVQ/VX969lHBcuhVZ+9OyAS30Dr6xvF5e2tlM9ucoWt6Yf9X9EwPfAOr8ardbIjNS8T5A+Tvz/0TFOdyMuXkjYXM6mL0Ff2YxDRm+b2XsIp15FHgc6s4wzkuYi0pIU1IqU6qFIs04/gS0tQHwp2KuQ==</latexit><latexit sha1_base64="UHeGIw+WVb7fZTp5Gwd6WNQPzEw=">AAACZ3ichVG7SgNBFD1Z3/GRqCABm2iIWIW7KipWgo1lfCQRVMLuOjFL9sXuJqDBH7CwVbBSEBE/w8YfsPATgmUEGwvvbhZERb3DzJw5c8+dMzOqY+ieT/Qck7q6e3r7+gfig0PDI4nk6FjRs+uuJgqabdjujqp4wtAtUfB13xA7jisUUzVESa2tBfulhnA93ba2/SNH7JvKoaVXdE3xAypdL8+XkxnKURjpn0COQAZR5O3kLfZwABsa6jAhYMFnbECBx20XMggOc/toMucy0sN9gRPEWVvnLMEZCrM1Hg95tRuxFq+Dml6o1vgUg7vLyjSy9ER31KZHuqcWvf9aqxnWCLwc8ax2tMIpJ05TW2//qkyefVQ/VX969lHBcuhVZ+9OyAS30Dr6xvF5e2tlM9ucoWt6Yf9X9EwPfAOr8ardbIjNS8T5A+Tvz/0TFOdyMuXkjYXM6mL0Ff2YxDRm+b2XsIp15FHgc6s4wzkuYi0pIU1IqU6qFIs04/gS0tQHwp2KuQ==</latexit>

u4
<latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="bs8QlLljyYde7WbNFuyzJJm+ZMk=">AAACVXichVG7SgNBFD1ZX3F9JMFGsAmGiFW4a6NYCTaWeZgHxBB2N6Mu2ewuu5tADP5AWgsLKwUR8TNs/AGL9DZiGcHGwrubgKiod5iZM2fm3DlzR3NMw/OJBhFpYnJqeiY6K8/NywuLsfh8ybPbri6Kum3abkVTPWEalij6hm+KiuMKtaWZoqw1d4P9cke4nmFb+37XEbWWemQZh4au+kxl6/EUZSiM5E+gjEEK47DjNzhAAzZ0tNGCgAWfsQkVHrcqFBAc5mroMecyMsJ9gVPIrG3zKcEnVGabPB7xqjpmLV4HOb1QrfMtJneXlUmk6ZFuaUgPdEfP9P5rrl6YI/DS5VkbaYVTj/WXC2//qlo8+zj+VP3p2cchtkKvBnt3QiZ4hT7Sd07Oh4XtfLq3Rlf0wv4vaUD3/AKr86pf50T+AjLXX/le7Z+gtJFRKKPkCFGsYBXrXOZN7GAPWRT5ugb6OIs8SbKUGP2TFBl/WAJfQlr6AAYJh7c=</latexit><latexit sha1_base64="t1i9QfSvNj/gribi2CnfPuakwm0=">AAACXHichVHLSsNAFD2Nr1ofrS6k4KZYFFflRgTFleDGZR/2AbWUJI5tME1CkhZq8QdcuK3gSkFE/Aw3/oCLfkJxWcGNC2/Sgqiod5iZM2fm3DkzV7UN3fWIeiFpbHxicio8HZmZnZuPxhZmC67VdDSR1yzDckqq4gpDN0Xe0z1DlGxHKA3VEEX1ZM/fL7aE4+qWeeC1bVFpKDVTP9Y1xfOpRLO6WY0lKUVBJH4CeQSSGEXait3hEEewoKGJBgRMeIwNKHC5lSGDYDNXQYc5h5Ee7AucIcLaJp8SfEJh9oTHGq/KI9bktZ/TDdQa32Jwd1iZwCo90z0N6IkeqE/vv+bqBDl8L22e1aFW2NXoeTz39q+qwbOH+qfqT88ejrEdeNXZux0w/iu0ob512h3kdrKrnTW6oRf2f009euQXmK1X7TYjsleIcAHk79/9ExQ2UjKl5AwhjGWsYJ2/eQu72Ecaeb6ujgt0cRnqS1FpaVgqKTSq2SK+hBT/AMpNifM=</latexit><latexit sha1_base64="t1i9QfSvNj/gribi2CnfPuakwm0=">AAACXHichVHLSsNAFD2Nr1ofrS6k4KZYFFflRgTFleDGZR/2AbWUJI5tME1CkhZq8QdcuK3gSkFE/Aw3/oCLfkJxWcGNC2/Sgqiod5iZM2fm3DkzV7UN3fWIeiFpbHxicio8HZmZnZuPxhZmC67VdDSR1yzDckqq4gpDN0Xe0z1DlGxHKA3VEEX1ZM/fL7aE4+qWeeC1bVFpKDVTP9Y1xfOpRLO6WY0lKUVBJH4CeQSSGEXait3hEEewoKGJBgRMeIwNKHC5lSGDYDNXQYc5h5Ee7AucIcLaJp8SfEJh9oTHGq/KI9bktZ/TDdQa32Jwd1iZwCo90z0N6IkeqE/vv+bqBDl8L22e1aFW2NXoeTz39q+qwbOH+qfqT88ejrEdeNXZux0w/iu0ob512h3kdrKrnTW6oRf2f009euQXmK1X7TYjsleIcAHk79/9ExQ2UjKl5AwhjGWsYJ2/eQu72Ecaeb6ujgt0cRnqS1FpaVgqKTSq2SK+hBT/AMpNifM=</latexit><latexit sha1_base64="SrKjtjE0MhjN7rOkfGBtQtevy0M=">AAACZ3ichVHLSsNAFD2Nr1ofrQoiuKmWiqtyIwXFVcGNy1atFmopSZxqaJqEJC3U4g+4cFvBlYKI+Blu/AEXfoK4VHDjwps0IFrUO8zMmTP33Dkzo9qG7npETxFpYHBoeCQ6Ghsbn5iMJ6amd12r6WiiqFmG5ZRUxRWGboqip3uGKNmOUBqqIfbU+oa/v9cSjqtb5o7XtkWloRyaek3XFM+nks1qtppIUYaCSPYDOQQphJG3EjfYxwEsaGiiAQETHmMDClxuZcgg2MxV0GHOYaQH+wIniLG2yVmCMxRm6zwe8qocsiav/ZpuoNb4FIO7w8ok0vRIt/RKD3RHz/Txa61OUMP30uZZ7WmFXY2fzm2//6tq8Ozh6Ev1p2cPNawFXnX2bgeMfwutp28dd1+317fSnSW6ohf2f0lPdM83MFtv2nVBbF0gxh8g/3zufrC7kpEpIxcolcuGXxHFPBaxzO+9ihw2kUeRzz3CGbo4jzxLcWlWmuulSpFQM4NvIS18AsLDirQ=</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit><latexit sha1_base64="Ib3rxaFAKlfji6QVGw91PK5zjAY=">AAACZ3ichVG7SgNBFD1Z3/GRqCCCTTRErMJdCShWARvLRI0GooTddZIs2Re7m4AGf8DCNoKVgoj4GTb+gIWfIJYKNhbe3SyIinqHmTlz5p47Z2ZUx9A9n+gxJvX1DwwODY/ER8fGJxLJyakdz265mihptmG7ZVXxhKFbouTrviHKjisUUzXErtpcD/Z328L1dNva9g8dsW8qdUuv6ZriB1SqVc1Vk2nKUhipn0COQBpRFOzkNfZwABsaWjAhYMFnbECBx60CGQSHuX10mHMZ6eG+wDHirG1xluAMhdkmj3VeVSLW4nVQ0wvVGp9icHdZmUKGHuiGXuiebumJ3n+t1QlrBF4OeVZ7WuFUEyezW2//qkyefTQ+VX969lHDauhVZ+9OyAS30Hr69lH3ZWttM9NZpEt6Zv8X9Eh3fAOr/apdFcXmOeL8AfL35/4JdpazMmXlYi6dz0VfMYw5LGCJ33sFeWyggBKf28ApujiLPUkJaUaa7aVKsUgzjS8hzX8AxAOKuA==</latexit>

W

2
� a1

W

2
� an

Figure 4: The constructed graph H ′′.

Thus, there are two coalitions C1, C2 in P such that u1 ∈ C1 and u2 ∈ C2. For each a ∈ A, one
of va ∈ C1, va ∈ C2, and va ∈ C ′ holds where C ′ ⊆ VA does not contain u1 and u2. This implies
that the social welfare of P is at most 2W because at most one of {va, u1} and {va, u2} contributes
to the social welfare. If there is an agent va in neither C ′, the social welfare of P is strictly less
than 2W . Therefore, it holds that either va ∈ C1 or va ∈ C2 for each va ∈ VA in P. Suppose that
uP(u1) > uP(u2). Then u2 envies u1 by the definition of H. This contradicts the assumption. Now,
we have uP(u1) = uP(u2) = W/2. Let Ai = {a ∈ A | va ∈ N(ui) ⊆ VA} for i ∈ {1, 2}. Then a
partition {A1, A2} satisfies that

∑
a∈A1

a =
∑

a∈A2
a = W/2.

Next, we show that Max Egalitarian is weakly NP-hard on series-parallel graphs of pathwidth
4. Note that the class of series-parallel graph is equivalent to graphs with treewidth 2.

Theorem 5. In the symmetric hedonic games, Max Egalitarian is weakly NP-hard on series-
parallel graphs of pathwidth 4 even if the preferences are symmetric.

Proof. We give a reduction from Parition as in the proof of Theorem 4, though we adopt a
bit different graph from H. For each vai

in VA, we create two copies of vai
, denoted by v′ai

and v′′ai
respectively, such that they form a clique. For each ai ∈ A, we define the weights

wvai
v′
ai

= wvai
v′′
ai

= W/4− ai/2 and the weight wv′
ai

v′′
ai

= W/4 + ai/2. Without loss of generality,

we can assume that each ai is even. Let V ′A = {v′a | a ∈ A} and V ′′A = {v′′a | a ∈ A} and let H ′ be
the constructed graph (see Fig. 3). For the graph H ′, if we set Xi = {u1, u2, vai , v

′
ai
, v′′ai
} for each

ai and connect Xi and Xi+1 by an edge, we can construct a path decomposition of width at most
4. Also, it is easy to show that H ′ is a series-parallel graph, and hence the treewidth of H ′ is 2.

In the following, we show that there exists a partition (A1, A2) such that
∑

a∈A1
a =

∑
a∈A2

a =
W/2 if and only if there exists a partition P ′ in H ′ such that minv∈V (H′) uP′(v) = W/2.

Given a partition (A1, A2) of A such that
∑

a∈A1
a =

∑
a∈A2

a = W/2, we set VAi = {va ∈
VA | a ∈ Ai}, V ′Ai

= {v′a ∈ V ′A | a ∈ Ai}, and V ′′Ai
= {v′′a ∈ V ′′A | a ∈ Ai} for i ∈ {1, 2}. Let

P = {VA1
∪ V ′A1

∪ V ′′A1
∪ {u1}, VA2

∪ V ′A2
∪ V ′′A2

∪ {u2}} be a partition in H ′. By the definition of
H ′, we have uP(v) = W/2 for every v ∈ V (H ′).

Conversely, we are given a partition P such that minv∈V (H′) uP′(v) = W/2. If P has a coalition
that contains both u1 and u2, the utilities of u1 and u2 are less than 0. Thus, we suppose that
there are two coalitions C1, C2 in P such that u1 ∈ C1 and u2 ∈ C2. For each a ∈ A, if va, v′a, and
v′′a belong to a different coalition from the other two, the utility of each is strictly less than W/2.
Moreover, if va ∈ VA belongs to neither C1 nor C2, uP(va) < W/2. Thus, va, v′a, and v′′a belong to
the same coalition of either C1 or C2.

Since the utilities of u1 and u2 are W/2, it holds that
∑

v∈N(u1) wu1v =
∑

v∈N(u2) wu2v = W/2.

Therefore, if we set Ai = {a ∈ A | va ∈ N(ui)}, (A1, A2) is a partition satisfying
∑

a∈A1
a =∑

a∈A2
a = W/2.

10

Note that the pathwidth and the treewidth of H ′ are bounded, but the vertex cover number is
not bounded. We can similarly show that Max Egalitarian is also weakly NP-hard on bounded
vertex cover number graphs by using the reduced graph H ′′ in Fig. 4.

Theorem 6. Max Egalitarian is weakly NP-hard on 2-apex graphs of vertex cover number 4
even if the preferences are symmetric.

Proof. We give a reduction from Parition as in the proof of Theorem 4. Without loss of generality,
we suppose an < W/2. To show this, we modify the graph H ′ in Theorem 4. We add two super
vertices u3 and u4 connecting to all vertices in VA, respectively. For each edge {ai, uj} where
i ∈ {1, . . . , n} and j ∈ {3, 4}, we set the weight waiuj

= W/2 − ai. Let H ′′ be the constructed
graph (see Fig. 4). We can observe that H ′′ is a 2-apex graph because a graph obtained from H ′′

by deleting u3, u4 is planar. Moreover, {u1, u2, u3, u4} is a vertex cover of size four in H ′′.
Then, we show that there exists a partition (A1, A2) such that

∑
a∈A1

a =
∑

a∈A2
a = W/2 if

and only if there exists a partition P in H ′′ such that minv∈V (H′) uP(v) = W/2.
Given a partition (A1, A2) of A such that

∑
a∈A1

a =
∑

a∈A2
a = W/2, we set VAi

= {va ∈
VA | a ∈ Ai} for i ∈ {1, 2}. Let P = {VA1

∪ {u1, u3}, VA2
∪ {u2, u4}} be a partition in H ′′.

By the definition of H ′, we have uP(v) = W/2 for every v ∈ V (H ′). For j ∈ {1, 2}, it holds
that uP(uj) =

∑
a∈Aj

a = W/2. Since an < W/2, it holds that |A1|, |A2| ≥ 2 and then we

have uP(uj) ≥ W/2. Moreover, since any va has either u1 and u3 or u2 and u4 as neighbors,
uP(va) = W/2 holds.

Conversely, we are given a partition P such that minv∈V (H′′) uP(v) = W/2. If P has a coalition
that contains both u1 and u2, the utilities of u1 and u2 are less than 0. We suppose that there are
two coalitions C1, C2 in P such that u1 ∈ C1 and u2 ∈ C2.

Since the utilities of u1 and u2 are W/2, it holds that
∑

v∈N(u1) wu1v =
∑

v∈N(u2) wu2v = W/2.

Therefore, if we set Ai = {a ∈ A | va ∈ N(ui)}, (A1, A2) is a partition satisfying
∑

a∈A1
a =∑

a∈A2
a = W/2. Note that N(u1) = N(u2) ⊆ VA.

Aziz et al. show that asymmetric Max Egalitarian is strongly NP-hard [4]. We show that
symmetric Max Envy-free and symmetric Max Egalitarian remain to be strongly NP-hard.
To show this, we give a reduction from 3-Partition, which is strongly NP-complete [15].

Theorem 7. Max Envy-free and Max Egalitarian are strongly NP-hard even if the preferences
are symmetric.

Proof. We first explain a reduction for Max Envy-free. For H in Theorem 4, we set n = 3m.
Then we add m− 2 super vertices {u3, . . . , um} connecting to every vertex vai in VA by an edge of
weight ai. Moreover, we connect up and uq with an edge of weight −mB for p, q ∈ {1, . . . ,m} and
p 6= q where B =

∑
a∈A a/n. Note that {u1, . . . , um} forms a clique. The number of vertices in the

constructed graph is m + 3m = 4m. It is easily seen that there is a partition (A1, . . . , Am) such
that |Ai| = B for each i if and only if there is an envy-free partition with social welfare at least
2mB in H as in the proof of Theorem 4 .

Next, we explain a reduction for Max Egalitarian. For H ′ in Theorem 5, we set n = 3m. We
create m super vertices {u3, . . . , um} connecting to every vertex vai in VA by an edge of weight ai in
H ′. Moreover, we connect up and uq with an edge of weight −mB for p, q ∈ {1, . . . ,m} and p 6= q.
Finally, we change the weights of {vai

, v′ai
} and {vai

, v′ai
} to B/2−ai/2 and the weight of {v′ai

, v′′ai
}

to B/2 + ai/2. Then we can observe that there is a partition (A1, . . . , Am) such that |Ai| = B for
each i if and only if there is a partition partition in H ′ such that minv∈V (H′) uP′(v) = B as in the
proof of Theorem 5.

Since tw(G) ≤ vc(G), Max Envy-free is weakly NP-hard on graphs of tw(G) = 2 by Theorem
4. Also, Max Egalitarian is weakly NP-hard on graphs of tw(G) = 2 by Theorem 5. However, we
show that symmetric Max Envy-free and symmetric Max Egalitarian on trees, which are of
treewidth 1, are solvable in linear time. Indeed, we can find an envy-free and maximum egalitarian

11

partition with maximum social welfare. Such a partition consists of connected components of a
forest obtained by removing all negative edges from an input tree.

Theorem 8. Symmetric Max Envy-free and symmetric Max Egalitarian are solvable in
linear time on trees.

Note that linear-time solvability does not hold for asymmetric cases, though asymmetric Max
Egalitarian on trees can be solved in near-linear time.

Theorem 9. Max Egalitarian can be solved in time O(n logW) on trees.

Proof. In this proof, we design an algorithm for Max Egalitarian on trees with self-loops, which
is a slightly wider class of graphs. Given a tree T with self-loops and a non-negative value W , our
algorithm determines whether there exists a partition of T such that the utility of every agent is at
least W in linear time. The idea is that we can immediately answer “No” by focusing on a leaf, or
we can reduce the given T to a smaller tree T ′ with self-loops whose answer is equivalent to the
one for T .

Given a tree T , we consider a leaf u and its adjacent vertex v. Let w(v), w(u, v) and w(v, u) be
the weights of self-loop of v, edges (u, v) and (v, u), respectively. We consider the following four
cases: (i) w(u) < W and w(u) + w(u, v) < W hold, (ii) w(u) < W and w(u) + w(u, v) ≥W hold,
(iii) w(u) ≥ W and w(u) + w(u, v) < W hold, and (iv) w(u) ≥ W and w(u) + w(u, v) ≥ W hold.
In case (i), u can be isolated or can be with v, but in any cases, u’s utility is smaller than W ; the
answer is obviously “No”. In case (ii), in order to give u utility at least W , u and v should belong
to a same coalition, which implies that v receives utility w(v, u). This can be interpreted that u is
contracted into v and the weight of self-loop (v, v) is updated to w(v) + w(v, u). In case (iii), in
order to guarantee at least W utility for u, u should be isolated. Then, we simply consider the
problem for T ′ obtained from T by deleting u. In case (iv), u can have utility at least W whichever
u belongs to a same coalition with v. We then consider two subcases: (iv-1) w(v, u) > 0 and (iv-2)
w(v, u) < 0 (if w(v, u) = 0, u does not affect the partition. We can ignore v). If (iv-1), v can reserve
utility w(v, u) by belonging to a same coalition with u; we can apply the same argument with (ii).
If (iv-2), it is better that v does not belong to a same coalition with u; we can apply the same
argument with (iii).

By the above observation, we can immediately say “No”, or obtain T ′ with one smaller vertices.
Since the above check can be done in O(1), the decision problem can be done in O(n) time, where
n is the number of vertices. By applying the binary search, we can obtain a maximum egalitarian
partition.

Theorems 5 and 6 mean that Max Egalitarian is weakly NP-hard even on bounded treewidth
graphs. On the other hand, we show that there is a pseudo FPT algorithm for Max Egalitarian
when parameterized by treewidth.

Theorem 10. Given a tree decomposition of width tw, Max Egalitarian can be solvable in time
(twW)O(tw)n where W = maxu∈V

∑
v∈N(u) |wuv|.

Proof. Let Vi be the set of vertices in Xi or the descent of Xi on a tree decomposition. Then we
define DP tables of our dynamic programming.

Let Pi be a partition of Xi and ui be a |Xi|-dimensional vector whose elements take from −W
to W , called a utility vector of Xi. For v ∈ Xi, the element ui(v) represents the utility of v in G[Vi].
Finally, we define Ai[Pi,ui] for each bag Xi by using Pi and ui as the maximum minimum utility
of an agent in Vi \Xi in G[Vi]. The value of Ar[∅, ∅] is an optimal value for Max Egalitarian
in G. In the following, we define the recursive formulas for computing Ai[Pi,ui] on a nice tree
decomposition.

Leaf node: We initialize DP tables for each leaf node i as Ai[∅, ∅] = W + 1. Note that the
maximum minimum utility is at most W and once we execute the recursive formula in a forget
node, Ai[Pi,ui] becomes at most W .

12

Introduce vertex v node: Let Cv ∈ Pi be a coalition that contains v in an introduce v node i.
Note that Cv may contain only v, that is, Cv = {v}. In an introduce v node, an agent v is added to a
coalition. This changes the utilities of agents in Cv. Also, the utility of v in G[Vi] is the sum of weight
of edges between v and agents in Cv. Since every agent in Xj also appears in Xi, the maximum
minimum utility of an agent in Vi \Xi in G[Vi] does not change. Therefore, we define the recursive
formula as follows: Ai[Pi,ui] = Aj [Pj ,uj], where Pj = Pi \{Cv}∪{Cv \{v}}, uj(u) = ui(u)−wuv

for u ∈ Cv \ {v}, uj(u) = ui(u) for other u’s in Xi \ {v}, and
∑

u∈N(v)∩Cv
wvu = ui(v). Otherwise,

we define Ai[Pi,ui] = −∞ as an invalid case.

Forget v node: In a forget v node, if a vertex v is forgotten, it never appears in Xi and its
ancestors on the decomposition tree. This implies that the utility of v does not change hereafter.
Namely, the maximum minimum utility among forgotten agent is stored in Ai[Pi,ui] in some sense.
Thus what we need to do here is to update the minimum by comparing the previous maximum
minimum utility with the utility of the newly forgotten agent, which can be the new minimum.
Taking the maximum among Pj and uj , this can be interpreted as the following recursive formula:

Ai[Pi,ui] = max
Pj ,uj

min{Aj [Pj ,uj],uj(v)},

where uj(u) = ui(u) for u ∈ Xi and Pj \ {Cv} ∪ {Cv \ {v}} = Pi. The condition Pj \ {Cv} ∪ {Cv \
{v}} = Pi means that the coalition to which an agent belongs in node j is the same as the coalition
to which an agent belongs in node i.

Join node: For two children j1, j2 of a join node i, it holds that Xi = Xj1 = Xj2 . To update
Ai[Pi,ui] in a join node, we first take the minimum of Aj1 [Pi,uj1] and Aj2 [Pi,uj2]. Note that
the maximum minimum utility among forgotten agent until Xi is the minimum of ones until the
children nodes. Here, for every agent v ∈ Xi, ui(v) = uj1(v) + uj2(v)−∑

u∈N(v)∩Cv
wvu must hold.

The subtraction avoids the double counting of edges. Then taking the maximum among uj1 and
uj2 satisfying the above condition, the recursive formula can be defined as follows:

Ai[Pi,ui] = max
uj1+uj2=u′

i

min{Aj1 [Pi,uj1], Aj2 [Pi,uj2]},

where each element u′i(v) of u′i is defined as u′i(v) = ui(v)−∑
u∈N(v)∩Cv

wvu.

Since the size of a DP table of each bag is (twW)O(tw) and each recursive formula can be
computed in time (twW)O(tw), the total running time is (twW)O(tw)n.

Theorem 10 implies that if W is bounded by a polynomial in n, Max Egalitarian can be
computed in time nO(tw).

References

[1] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree-like structure in large social and
information networks. In ICDM 2013, pages 1–10, 2013.

[2] J. Alcalde and P. Revilla. Researching with whom? stability and manipulation. Journal of
Mathematical Economics, 40(8):869–887, 2004.

[3] H. Aziz, F. Brandt, and P. Harrenstein. Fractional hedonic games. In AAMAS 2014, pages
5–12, 2014.

[4] H. Aziz, F. Brandt, and H. G. Seedig. Computing desirable partitions in additively separable
hedonic games. Artificial Intelligence, 195:316 – 334, 2013.

13

[5] C. Ballester. NP-completeness in hedonic games. Games and Economic Behavior, 49(1):1–30,
2004.

[6] S. Banerjee, H. Konishi, and T. Sönmez. Core in a simple coalition formation game. Social
Choice and Welfare, 18(1):135–153, 2001.

[7] A. Bogomolnaia and M. O. Jackson. The stability of hedonic coalition structures. Games and
Economic Behavior, 38(2):201–230, 2002.

[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer International Publishing, 2015.

[9] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wojtaszczyk.
Solving connectivity problems parameterized by treewidth in single exponential time. In FOCS
2011, pages 150–159, 2011.

[10] J. H. Dreze and J. Greenberg. Hedonic coalitions: Optimality and stability. Econometrica,
48(4):987, 1980.

[11] R. I. M. Dunbar. Neocortex size as a constraint on group size in primates. Journal of Human
Evolution, 22(6):469 – 493, 1992.

[12] R. Elsässer and T. Tscheuschner. Settling the complexity of local max-cut (almost) completely.
In ICALP 2011, pages 171–182, 2011.

[13] F. V. Fomin and D. M. Thilikos. A simple and fast approach for solving problems on planar
graphs. In STACS 2004, pages 56–67, 2004.

[14] M. Gairing and R. Savani. Computing stable outcomes in hedonic games. In SAGT 2010,
pages 174–185, 2010.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[16] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified np-complete graph
problems. Theoretical Computer Science, 1(3):237–267, 1976.

[17] K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time.
Journal of Combinatorial Theory, Series B, 102(2):424 – 435, 2012.

[18] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 1994.

[19] M. Le Breton, I. Ortuño-Ortin, and S. Weber. Gamsons law and hedonic games. Social Choice
and Welfare, 30(1):57–67, 2008.

[20] P. J. McSweeney, K. Mehrotra, and J. C. Oh. A game theoretic framework for community
detection. In ASONAM 2012, pages 227–234, 2012.

[21] M. Olsen. Nash stability in additively separable hedonic games and community structures.
Theory of Computing Systems, 45(4):917–925, 2009.

[22] D. Peters. Graphical hedonic games of bounded treewidth. In AAAI 2016, pages 586–593,
2016.

[23] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjorungnes. Hedonic coalition formation for
distributed task allocation among wireless agents. IEEE Transactions on Mobile Computing,
10(9):1327–1344, 2010.

[24] S. C. Sung and D. Dimitrov. Computational complexity in additive hedonic games. European
Journal of Operational Research, 203(3):635–639, 2010.

14

	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Preliminaries
	2.1 Hedonic game
	2.2 Graph classes
	2.3 Graph parameters and parameterized complexity
	2.4 Problem list

	3 Nash-stable
	4 Max Utilitarian
	5 Max Envy-free and Max Egalitarian

