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Abstract. We propose an image reconstruction framework to combine
a large number of overlapping image patches into a fused reconstruc-
tion of the object of interest, that is robust to inconsistencies between
patches (e.g. motion artefacts) without explicitly modelling them. This
is achieved through two mechanisms: first, manifold embedding, where
patches are distributed on a manifold with similar patches (where sim-
ilarity is defined only in the region where they overlap) closer to each
other. As a result, inconsistent patches are set far apart in the manifold.
Second, fusion, where a sample in the manifold is mapped back to image
space, combining features from all patches in the region of the sample.

For the manifold embedding mechanism, a new method based on
a Convolutional Variational Autoencoder (β-VAE) is proposed, and
compared to classical manifold embedding techniques: linear (Multi
Dimensional Scaling) and non-linear (Laplacian Eigenmaps). Experi-
ments using synthetic data and on real fetal ultrasound images yield
fused images of the whole fetus where, in average, β-VAE outperforms
all the other methods in terms of preservation of patch information and
overall image quality.

1 Introduction

Medical image reconstruction through fusion of partial captures consists of com-
bining information from multiple images of the same object. Fusion is particu-
larly useful when the images involved contain complementary information [7],
for example when fusing Magnetic Resonance (MR) and Computed Tomography
(CT) images of the brain [8] which shows more brain structures than any of the
individual images, or when compounding multiple ultrasound (US) images of a
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fetus to provide whole body images [4,14]. The latter is the application targeted
in this paper.

Fusion is normally a two step process: first, alignment of the images involved.
Second, fusion of the aligned images. Alignment can be achieved by image reg-
istration [3]. Normally, rigid alignment is sufficient, if no motion is assumed
between patches. In many cases, non-rigid motion can be expected, particularly
in fetal imaging where the fetus moves frequently between acquisitions. Most
research on image fusion has focused on discarding motion corrupted images or
on correcting for motion using non-rigid registration [5,12]. However, registra-
tions results are very sensitive to the registration method and the registration
parameters. In the specific case of US imaging, motion correction using non-rigid
registration can introduce visually abnormal patterns that degrade the quality
of the reconstructed image. Moreover, the main cause of artefacts with state of
the art methods is caused by motion and registration errors.

This paper introduces a novel and generic fusion framework for overlapping
images (or patches) that have been aligned but may present residual registration
errors and non-rigid motion artefacts. The aligned images are embedded into a
manifold which separates motion corrupted patches, hence yielding a motion-free
fused image without the need for non-rigid registration. The proposed method
is evaluated on synthetic 2D images and on 3D fetal US.

2 Method

The key idea is illustrated in Fig. 1: we define a data set of i = 1, . . . , N image
patches Ii(x), spatially aligned (except for any non-rigid motion) and re-sampled
into the same grid, so that the i-th patch only has information within a region
defined by a binary mask Mi(x). In this paper, patches are aligned rigidly using
the method from [4]. Then, if patches i and j are similar in Mi ∩ Mj , they are
close neighbours in some manifold representation.

Fig. 1. Overview of the method. Patches are embedded in a manifold, and the fused
image can be retrieved by mapping a sample in the manifold back to image space.
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Because the corresponding location si of Ii in the manifold represents the
entire patch, if a query location sq from the manifold can be projected back
into the image space, then the resulting image has features from nearby patches,
effectively fusing the data. In this paper we compare three methods to embed
the patches into a manifold: linear embedding (multi dimensional scaling, MDS
[11]), non-linear embedding (Laplacian Eigenmaps, LEM [1]) and variational
autoencoders (β-VAE [6]).

2.1 Image Patch Fusion with Classical Manifold Embedding

Registered images capture aligned parts of the same fetus, and differences
between them are due mainly to noise, artefacts, and possibly non-corrected
motion. As a result, the main variation between images can be represented in
a lower-dimensional manifold. Classical manifold embedding methods work by
creating a neighbourhood graph between data points (patches), which is rep-
resented as a pair-wise resemblance matrix. Then, a linear or non-linear map
M : RD −→ R

d that minimizes the change of these distances and brings the
data into a d � D-dimensional space (manifold) is computed. As a matter of
fact, when a linear embedding is used, the result is equivalent to a weighted
average of the most similar patches using MSE as similarity criteria.

We propose to compute the pair-wise resemblance Ri,j only in the region
where the pair of patches overlap, this is R(Ii, Ij) = r(Ii ∩Mj , Ij ∩Mi), where r
is, here, the mean square error (MSE). This enforces that consistent patches are
clustered together in the manifold, and indeed if two different patches Ii and Ij

are identical in the region where they overlap, then M(Ii) = M(Ij) = s ∈ R
d.

If we could compute the inverse mapping F = M−1(s), then F would fuse the
information of Ii and Ij . However, most manifold embedding techniques are not
invertible, so M−1 cannot be computed. We can estimate the fused image F(sq)
corresponding to a query sample sq in the manifold by interpolating nearby
samples, e.g. using Shepard’s interpolation [13]:

F(sq) =

∑
i∈Ωq

IiMiwi(sq)
∑

i∈Ωq
Miwi(sq)

(1)

where Ωq is a neighbourhood on the manifold around sq and wi is the distance-
based Shepard’s weight, also computed on the manifold as wi(sq) = 1/‖sq −si‖2.

2.2 Image Patch Fusion with a Variational Autoencoder

Autoencoders encode input data into a lower dimensional (latent) space, with
the advantage that they provide a decoder sub-net to map the latent space
back into the original space, effectively implementing the sought F = M−1(s)
mapping. β-VAEs [6,10] additionally constrain the latent space to be normally
distributed, which produces consistent images from the entire manifold as the
latent space is continuous by construction. As a result, β-VAEs are ideally placed
to build the manifold from patch images and to retrieve a fused image from the
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query manifold sample sq. Normally, VAEs (and more broadly, neural-networks)
are used to learn models of a population, and then make some predictions from
unseen data. Crucially, in this work we propose to learn a model of specific sub-
ject (fetus), of which we have a large number of partial observations (overlapping
patches), which yields not a population model, but a reconstruction of the sub-
ject itself. Then, instead of querying the model to obtain predictions of unseen
data, the latent space (manifold) can be queried to reconstruct different poses
of the subject.

We assume that each input patch {Ii}N
i=1, will be similar (in the least squares

sense, and within Mi) to the fused image Fi = F (si) except for a normally
distributed random noise, i.e. Ii−Fi∩Mi = εi ∼ N (0, σ2). As a result, P (F |s) =
P (ε|s) = P (I|s). In consequence, the log likelihood estimator of P (F |s) yields
the MSE:

log P (F |s) =
N∑

i=1

log P (Ii − Fi ∩ Mi|s) = C +
N∑

i=1

||Ii − Fi(s) ∩ Mi||2
2σ2

(2)

Noting the encoder function s = fφ(I), and adding the Kullback-Leiber (KL)
divergence (weighted by β [6], which allows a trade-off between data fidelity and
normal distribution of the latent space) the loss becomes:

L(θ, φ, β; {I}, {s}) =
N∑

i=1

||Ii − Fθ(fφ(Ii)) ∩ Mi||2 + βKL(si) (3)

The fused image can be reconstructed by sampling the latent space at {sq}.

3 Materials and Experiments

3.1 Materials

We carry out experiments on a synthetic and real data-sets. The synthetic data-
set consisted on 8 images of 128 × 128 pixels illustrating a fetus where the leg
was at different locations as if captured during a kick. These images were divided
into 280 overlapping patches of 40 × 40 pixels, with a 70% overlap both vertically
and horizontally, to which Gaussian noise ∼ N (μ = 0, σ = 5) was added.

Experiments using 3D and 2D images from healthy fetal subjects were carried
out. 3D ultrasound image sequences were acquired from two fetuses (GA 32w,
24w). Patient 1 was acquired over a head to toe sweep in which 120 volumes
were acquired. Patient 2 was acquired over 5 consecutive sweeps head to toe and
back, totalling 470 volumes. In both cases, data was acquired using a Philips
EPIQ system with a X6-1 transducer at 4 volumes/s.

Ultrasound data was registered using the method from [4], using a grid of 1500
points distributed evenly, and each registered image was transformed and re-
sampled into the fusion space at 1 mm3, totalling 181×95×226 and 172×175×185
voxels per volume for each patient. Registered input volumes were sliced through
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a longitudinal plane to produce 2D patches (275 × 184 and 352 × 285 pixels,
respectively), which were used for the 2D experiments on real data. The β-VAE
architecture was inspired by the 3D branch in [2] and represented in Fig. 2. The
kernel size in all conv layers is 3 × 3 (×3 in 3D). Training was carried out using
the Adam optimizer [9] with a learning rate of 10−4 and over 300 epochs.

Fig. 2. Architecture of the VAE. Convolution kernels are of size 3 × 3 (×3 in 3D).

3.2 Experiments

Whole-body fusion of the 2D fetal ultrasound images was used for quantitative
and qualitative validation. Quantitative evaluation was aimed at establishing the
ability of the method to get rid of fusion artefacts (namely non-rigid motion and
registration errors) while capturing the whole fetal anatomy, through the qual-
ity metric Q(i, j) =

√
1

|Mi|
∑

x∈Mi
||Ii(x) − Fj(x)||2, so that QIN (i) = Q(i, i),

measures the RMS difference between an input patch and the same region in the
fused image Fi reconstructed from the corresponding sample si in the manifold,
therefore it measures to what extent the information in the patch was preserved.
In order to measure the quality of the fusion outside the input patch Ii, we use
QOUT (i) = 1

|Ω|
∑

j∈Ω Q(i, j), where the set Ω is built incorporating the patch
Ij , j �= i, in increasing order Q(i, j), that does not intersect with patch Ii or with
any of the patches already in Ω.

Further qualitative evaluation was conducted on the experiments by measur-
ing the subjective appearance of the fused images. Three raters were presented
with 500 pairs of fused images, randomly selected from a uniform sampling grid
in the manifold. The raters were asked to select which image was best, or if they
were of equal quality.

Both qualitative and quantitative evaluations were carried out on the syn-
thetic and real datasets using the three methods: linear and non-linear manifold
embedding and β-VAE fusion.
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4 Results

The quantitative results are provided in Table 1. The pixel-wise average fusion
(Avg.) was used as baseline, and compared to the two manifold embedding
methods (MDS and LEM) and to the β-VAE fusion. β values in the range
[1 · 10−4, 1 · 10−2] were used, and a subset of this range, where results were best
(β ∈ [3 ·10−4, 2 ·10−3]) is reported. The rows where values of β yield significantly
worse results have been greyed out, so the remaining values give an idea of the
range of β where results are stable. Lower values of β introduced an increasing
amount of noise in the reconstruction, and higher values introduced blur, as the
latent space collapsed into a single point for β > 0.01. The results show that
the β-VAE approach outperforms all the other in preserving the features from
individual patches. β = 7 · 10−4 was used for the qualitative experiments.

Table 1. Quantitative results on quality of the fused 2D image, measuring the ability
of the method to preserve features from the input patches and provide a whole-fetus
fusion, reported for the synthetic dataset (Synth.) and patients 1 and 2 (P1 and P2).
Best values are highlighted in bold, worst are greyed out. All manifold fusion imple-
mentations outperform the naive average fusion, with the non-linear embedding (LEM)
being the worst (interpolation brings the fused image outside the manifold). Overall,
the β-VAE performs best, stable over a range of beta values. For patient 1, where the
patch alignment is particularly good and the non-rigid motion limited over a small
region covering the forearm, inter-method differences are less obvious.

QIN QOUT

Synth. P1 P2 Synth P1 P2
Avg 143.4± 33.8 153.8± 3.7 111.4± 10.6 112.9± 15.2 147.3± 3.8 96.7± 6.5
MDS 16.6±16.4 45.2±6.0 48.6±7.8 6.8±5.7 25.7±9.6 32.1±9.9
LEM 17.6±17.9 47.1±7.1 50.1±8.3 6.3±5.5 25.3±10.5 32.1±9.7

β

β
-V
A
E

3E-4 14.1±16.4 24.4±2.4 17.4±2.7 6.1±3.4 23.7±4.8 46.6±23.5
4E-4 14.7±17.5 25.9±2.9 17.3±2.5 6.4±4.0 37.0±12.5 38.5±20.2
5E-4 13.4±15.3 25.3±3.0 17.5±2.4 6.5±3.0 24.9±5.1 44.2±23.7
6E-4 13.6±16.5 25.6±2.7 17.8±2.9 6.1±3.6 26.4±5.3 38.8±22.1
7E-4 12.4±14.1 26.4±3.1 17.8±2.8 6.2±3.1 27.9±6.7 38.1±18.0
8E-4 14.2±16.3 27.2±3.1 18.0±2.9 6.0±3.0 30.0±6.8 40.8±21.6
9E-4 13.6±15.1 27.7±3.1 18.2±3.0 6.8±3.8 27.5±5.0 36.4±19.5
1E-3 13.8±15.7 28.0±3.6 18.7±3.0 6.7±4.3 29.4±6.8 39.6±19.1
2E-3 13.0±14.3 32.5±4.2 19.6±3.3 6.3±3.6 31.6±4.9 29.7±14.4

Qualitative results in Fig. 3, show the amount of images (in %) where the
fusion using the β-VAE method was judged better than the other methods,
for each data-set. Overall, the β-VAE method provided better fusions with less
artefacts. In the case of P1, there is no motion artefacts except for the fetal arm
(c.f. second row in Fig. 4), therefore the average reconstruction is of high quality
already. This explains the difference with the other data-sets.
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Fig. 3. β-VAE > Y indicates fraction of the times (in %) where the results with the
β-VAE where considered better than with method Y by 3 raters. The bars show the
average and standard deviation. The β-VAE outperforms all the other methods, with
the exception of P1 where the average fusion is chosen best more often. As supported
by Table 1, P1 combined good patch alignment and limited motion artefacts, so the
smooth appearance of the average fusion was found to be visually best.

Examples of representative 2D fusions are shown in Fig. 4, where the fused
images mapped back from the manifold sample corresponding to the patch on
the left column is shown. The ability of the β-VAE to provide reconstructions
without motion/blur artefacts is pointed at with white arrows. For example
the second row shows, for patient 1, the β-VAE reconstructions generated from
different manifold locations (corresponding to input patches marked by the red
contour) that recover the entire fetus but with the arm on a different pose.

Fig. 4. 2D Whole-fetus fusions (for synthetic data, patient 1 and 2, in rows 1, 2 and
3 respectively), obtained from sampling the manifold at the location corresponding to
one of the input patches. The region covered by the patch is outlined in red. White
arrows indicate regions where fusion is challenging due to motion or mis-registration
in input data. (Color figure online)
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Fig. 5. Example of 3D fusion of patients 1 (top, all methods provide similar visual
results) and 2 (bottom). Fusion methods, from left to right: average, MDS, LEM and
β-VAE. The arrows point at some of the artefacts that were found systematically with
classic manifold embedding techniques.

As a proof-of-concept, examples of the 3D version of the four methods for
patients 1 and 2 are shown in Fig. 5 (as anticipated in the 2D experiments,
volume renders of 3D reconstructions for patient 1 are indistinguishable). This
result shows the potential of the proposed method to reconstruct high quality
whole-body fetal images even from motion-corrupted input data, which would
otherwise blur the result.

5 Discussion and Conclusions

We have presented a new paradigm to carry out fusion of a large amount of image
patches, based on embedding the patches into a manifold through a map M,
and then sampling the manifold to reconstruct a fused image in the input image
space. The proposed paradigm has been implemented using Multi-Dimensional
Scaling, Laplacian Eigenmaps and a β variational autoencoder.

The inverse mapping M−1 was not available for classic manifold embed-
ding techniques (e.g. MDS, LEM) and the fused image was obtained by Shep-
ard’s interpolation of input patches that are nearby in the manifold. Although
non-linear embeddings potentially yield more accurate representation of the
data, recovering the fused image through interpolation results in out-of-manifold
images, which is why LEM produced worse results than the other methods. This
is, to the best of our knowledge, the first time that fusion has been approached
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as learning a single-instance model, where all the data are of the same object,
as opposed to the common practice of creating a model that captures the vari-
ability of a population. One advantage is that this eliminates bias from under-
represented cases in a training set, e.g. rare morphological abnormalities.

A limitation of the proposed framework is that it does not distinguish between
inter-patch differences due to motion, noise, etc. This lends itself towards disen-
tangled representation of these sources of variation, particularly since it may be
desirable to average over noise and artefacts while separating motion. This will
be investigated in future work.

The proposed method shows promising results on image fusion of rigidly pre-
aligned image patches, and particularly towards a challenging task as whole body
fetal image fusion. The fused images reduce the artefacts caused by non-rigid
motion and misalignment by pushing the problematic patches to relatively far
regions in the manifold.
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