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Abstract. Deep learning techniques have proven high accuracy for iden-
tifying melanoma in digitised dermoscopic images. A strength is that
these methods are not constrained by features that are pre-defined by
human semantics. A down-side is that it is difficult to understand the ra-
tionale of the model predictions and to identify potential failure modes.
This is a major barrier to adoption of deep learning in clinical practice.
In this paper we ask if two existing local interpretability methods, Grad-
CAM and Kernel SHAP, can shed light on convolutional neural networks
trained in the context of melanoma detection. Our contributions are (i)
we first explore the domain space via a reproducible, end-to-end learn-
ing framework that creates a suite of 30 models, all trained on a publicly
available data set (HAM10000), (ii) we next explore the reliability of
GradCAM and Kernel SHAP in this context via some basic sanity check
experiments (iii) finally, we investigate a random selection of models
from our suite using GradCAM and Kernel SHAP. We show that despite
high accuracy, the models will occasionally assign importance to features
that are not relevant to the diagnostic task. We also show that models
of similar accuracy will produce different explanations as measured by
these methods. This work represents first steps in bridging the gap be-
tween model accuracy and interpretability in the domain of skin cancer
classification.
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1 Introduction

Skin cancer is the most common form of cancer in the United States [I7I11],
and melanoma is the leading cause of skin cancer related death [I8]. Automated
diagnosis of melanoma from digitized dermoscopy images thus represents an im-
portant potential use case for deep learning methods. Inspired by a breakthrough
result by Esteva et. al., [7], many recent publications claim “better than derma-
tologist” performance of convolutional neural networks (CNNs) on a variety of
skin cancer classification tasks [7J4I93IT38]. If indeed such models have diag-
nostic performance comparable to board certified dermatologists, this heralds a
new era in skin cancer care, with standardization of diagnosis and democratiza-
tion of access [L0/14]. Early diagnosis of melanoma is associated with improved
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outcomes but poor availability of well trained clinicians in many parts of the
world means too often diagnosis is made too late. CNNs represent an important
new technology to address this problem for social good.

How can we evaluate the veracity of these exciting new claims? Unfortunately,
privacy constraints typically make it difficult to access training, validation, test
data, and final model weights. This makes it impossible to verify the accuracy of
these published models and reproduce their claims [4]. As is common in medical
settings, there are inherent known biases in the data: lesion classes are unevenly
distributed, healthy images are over-represented, racial bias is present (few le-
sions are from dark-skinned individuals) [3] and there is significant variability in
ground truth labelling [6]. Can we be confident the model has not inherited any
of these known biases? A further challenge is due to the presence of unknown
biases in the data. If an artifact is present in images from two diagnostic classes
but more prevalent in one, how do we know when the model classifications are
weighted by the presence or absence of this artifact?

In light of these problems, it is an open question as to the best strategy to
determine if a given model will generalize to future data where the distribution
of these biases may be different. Currently there are two approaches: (i) ad hoc
techniques that penalize model complexity (batch normalization and dropout, for
example), and (ii) training and testing models on larger and more complex data
sets. Importantly, neither of these techniques can identify, nor correct, specific
biases prior to model deployment.

In this paper, we investigate the possibility that current interpretability
methods may assist in this task. Interpretability methods seek to produce an
indication of features of the input data that the model regards as important for
weighting the final diagnostic decision. While they do not capture the entirety
of the predictive process, they can nonetheless provide some guidance to how a
given model makes decisions.

2 Experiments

2.1 Data

For this study we use publicly available data from HAM10000, a well curated
data set of dermoscopy images collected specifically for use in the machine learn-
ing context [22]. The full data set includes seven classes of skin lesions—in
this study we concentrate on differentiating between benign naevus (moles) and
melanoma, a particularly challenging clinical task. Our data set contains a total
of 6017 images, with significant class imbalance: 5403 naevi and 614 malignant
melanoma. We retain a balanced set of 200 images of each class as a hold out
test set. It is worth noting that in the clinical context false negatives (predict-
ing naevus when ground truth is melanoma) have far more serious consequences
than false positives (predicting melanoma when ground truth is naevus). This
means we need to ensure the class imbalance is addressed during training: a
model trained and tested on the current distribution can achieve high accuracy
(88%) simply by always guessing naevus.
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2.2 Models

The majority of publications in this area use transfer learning from Inception,
pre-trained on Imagenet with an added pooling layer, dense layer and dropout—
we follow suit for ease of comparison. We address class imbalance by first aug-
menting the melanoma images, obtaining a final set of 1656 melanoma images.
We then sample 15 random subsets of 818 images from both classes and train a
total of 30 models via a Bayesian hyper-parameter search—searching over learn-
ing rate, dropout, momentum, beta;, betas, number of dense nodes, number of
epochs, SGD and Adarrﬂ The aim is to survey the landscape of possible models,
giving us a selection of multiple networks to compare and explore rather than
a single, cherry-picked one. The mean AUC over the 30 models is 85% with a
variance of 1.8% and a mean recall of 87%—a performance comparable to other
published models in this context (e.g the model of [9] achieved AUC of 86%)|ﬂ
Reported AUC for melanoma identification from dermoscopy images for derma-
tologists is around 79% [9] and for primary care physicians even lower [16]. These
results signal the fact that this is indeed a difficult task for which CNN decision
support may prove useful.

It is interesting to note that the variance across model accuracy (AUC) over
the 30 models is relatively small at 1.8%. While these models share the same basic
architecture, they have been trained on different sub-samples of the data using
different hyper-parameters—thus are likely converging on different local optima.
This is evidenced by the differences in mis-classified test images across the dif-
ferent models. Interestingly, seventeen images were consistently mis-classified: at
least 25/30 models got the class label wrong. For example, the naevus in Fig.
was mis-classified by all 30 models as melanoma. Interestingly, this lesion does
arguably satisfy one of the clinical criteria for melanoma. A small human eval-
uation trial by 3 primary care physicians suggests these images are challenging:
scores were 4/17, 5/17 and 6/17.

2.3 GradCAM and Kernel SHAP

GradCAM [19] and Kernel SHAP [12] are both model agnostic, local inter-
pretability methods. While both highlight pixels that the trained network deems
relevant for the final classification, they work in very different ways. GradCAM
computes the gradient of the class-score (logit) with respect to the feature map
of the final convolutional layer. Formally, consider each input image as a vector
x € Rq where our model is a function S : Ry — R., with C' the total number of
classes. GradCAM provides an “interpretability” map I : Ry — R4 that maps

3 Details of augmentation, random data sampling, Bayesian hyper-parameter search,
all code for training and experiments, including the final 30 trained models can be
found here: https://github.com/KyleYoung1997/DNNorDermatologist

4 Note that differences in test set size and distribution mean that direct comparison
of model performance via AUC is of limited merit. However, as AUC is the standard
metric reported in the literature, we include it here. Further comment can be found
in the conclusions.
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Fig. 1. Naevus mis-classified by all 30 models as a melanoma, with GradCAM and
kernel SHAP saliency maps. Note there is more than one type of network within the
lesion, a feature which can be a marker for melanoma. The GradCAM map (centre
image) highlights a key deficiency of the method in this context: almost all of the lesion
is obscured by the saliency map, rendering the “explanation” clinically meaningless.

inputs to objects of the same dimension. If A are feature maps obtained from

the last convolutional layer, global average pooling of the gradients gives us a set

of neuron importance maps af = -3, 3" j aiﬁ— and the final mask corresponds
ij

to a ReLU applied to a weighted linear combination of the feature maps and the
importance maps: I(z) = ReLU(Y_, af A¥F). More details and examples can be
found in [I9].

While there are a large variety of methods for applying saliency maps, recent
work has shown that many are in fact independent of both the model weights
and/or the class labels [2]. In these cases it is likely the model architecture itself
is constraining the saliency maps to look falsely meaningful: frequently the maps
just act as a variant of edge detector [2]. This is particularly dangerous in the
context of skin cancer detection as features at the borders of lesions are often
considered diagnostic for melanoma: saliency maps that highlight the edges of a
lesion may be misconstrued as clinically meaningful. We use GradCAM in our
analysis because it was one of the few methods that passed the recommended
sanity checks (we also perform our own to double-check this particular context).

We also investigate the use of Kernel SHAP [12], an interpretability method
that was not among those investigated in [2], but has strong theoretical justifi-
cation [I5]. A stronger agreement was found between Shapley explanations and
human explanations when compared to two alternative popular saliency meth-
ods, LIME and DeepLIFT [12], further confirming that this is an appropriate
method to explore. Based on Shapley values from co-operative game theory [20],
the method assigns a fair attribution value to each feature based on the contri-
bution that feature makes to the total prediction. The method is proven to be
the unique mapping that satisfies a number of reasonable criteria and is calcu-
lated by considering interactions between all possible subsets of features. For d
features, calculating the Shapley value for a given feature k will need to account
for all 291 subsets containing k. Thus a downside to the original approach is
that it scales exponentially in the number of features. Consequently, we use an
approximate, computationally feasible method: Kernel SHAP [12].



Deep neural network or dermatologist? 5

conv2d_94 conv2d_77 conv2d_65 conv2d_51

¥ e ¥ e . | 7 3 I
’ by 7 | %
; [ 4

Fig. 2. Explanations following randomization of selected layers in the model. Changes
demonstrate dependence of explanation on model weights. SSIM scores averaged over
all images for GradCAM degraded across layers by 23%, 4%, 3%, 2%, 4%. Differences
were also seen for kernel SHAP: 17%, 3%, 5%, 3%, 7%. Green signifies areas of positive
contribution to a diagnosis of melanoma, red signifies negative.

2.4 Sanity checks

We perform three simple sanity checks on GradCAM and Kernel SHAP to ex-
plore their performance in this context. (i) Reproducibility: we run the algo-
rithms twice using the same randomly selected model and the same image, then
compare images visually and using SSIMEI GradCAM saliency maps were unsur-
prisingly visually identical, with a perfect SSIM of 1, reflecting the deterministic
nature of this algorithm. Kernel SHAP images were visually close to identical,
but with SSIM less than perfect (mean 0.92, standard deviation 0.028). This
small deviance is unsurprising given the method requires approximation via ran-
dom sampling of subsets of features. (ii) Model dependence: using techniques
inspired by [2] we randomize the weights of selective, progressively shallower lay-
ers in a randomly chosen model and recompute the GradCAM and Kernel SHAP
images. The idea is to ensure that the saliency maps are not in fact independent
of model weights. Visual comparison and SSIM scores verify that the maps are
indeed model dependent, an example can be seen in Fig.|2| (iii) Sensitivity: we
compare saliency maps from three models with the same AUC. This test serves
to determine the sensitivity of the maps to model weights and also provides
insight into differences across models of similar performance. Visual inspection
shows variation across three models with identical AUCs of 85% for both meth-
ods, with average variation in SSIM of 20% for both GradCShrapenlAM and
kernel SHAP. An example can be seen in Fig. [3]

® Details on SSIM (Structural Similarity Index) can be found in [23]
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2.5 Spurious correlation

The saliency maps show that at this resolution the majority of images do not
unambiguously capture clinically meaningful information. However, several im-
ages suggest that the model is indeed weighting the classification decision using
spurious correlations. Notable examples include those images that highlight the
dark corners of the images (e.g. Fig.

Fig. 3. GradCAM and kernel SHAP from two models with AUC 85%. Model 1 cor-
rectly predicted melanoma with 0.999 confidence (first two images). Model 2 incorrectly
predicted naevus with 0.996 confidence (second two images). The saliency maps indi-
cate model 2 has learned to weight the class decision using a spurious correlation: the
dark corners of the image.

2.6 Limitations

There are a number of limitations of this study. The small data size makes over-
fitting more likely, thus increasing the chances that we would uncover spurious
correlations. Additionally, while our small data size made many tasks compu-
tationally and practically feasible, for large test data sets this will not be the
case—visual inspection to screen for spurious correlations will likely become im-
practical. An alternative approach would be to use these methods to provide
feedback at the time of prediction: while a saliency map located on the lesion
can not yet be viewed as justification that clinically meaningful correlations have
been learned, a map that is clearly located on a clinically irrelevant region could
be used to signal a prediction that should be ignored. Our study was also limited
to models of a particular architecture, while we justify this as providing a point
of comparison with existing published research, future work could include model
architecture as a search hyper-parameter.

While the accuracy of our models is good and comparable to human accuracy,
it is likely ensembled methods will improve accuracy further. It is difficult to
envision how these interpretability methods could be applied meaningfully in this
context. One alternative could be to use the maps themselves to regularize each
of the models during training—methods such as GradMask suggest this may be
possible [2I]. Finally, there exists recent, alternative methods for implementing
Shapley analysis that may well produce better results and permit the use of
higher resolution images [BJI] . These experiments we leave for the future.
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3 Conclusions

There is a significant literature comparing the performance of DNNs and der-
matologists on test sets of dermoscopy images. These studies provide credibility
for pursuing research in this area and the next task is to develop techniques that
enable DNNs to become valued clinical decision support tools. We have shown
that GradCAM and kernel SHAP maps pass some basic sanity checks and can
provide insight into potential sources of bias. However, it is clear that more work
is needed before these maps can provide clinically meaningful information. We
have also shown that evaluating models according to AUC alone provides lim-
ited insight into the true nature of the performance of the model: saliency maps
show that models with the same AUC can make predictions using completely
different rationales.
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