
Towards Procedural Generation of Narrative
Puzzles for Adventure Games

Barbara De Kegel1[0000−0002−4194−234X] and Mads Haahr2[0000−0002−9273−6458]

1 University College Dublin
2 Trinity College Dublin

Abstract. Narrative puzzles involve exploration, logical thinking and
progressing a story. This paper presents a narrative design innovation in
the form of a system for the procedural generation of such puzzles for
use in story-rich games or games with large open worlds. The approach
uses an extended type of context-free grammar as the basis for both the
generation algorithm and the puzzle solving. Each designer-defined rule
in the grammar defines a possible behavior of item types in the game
world. Puzzles are generated at runtime on a per area basis, through
recursive generation of inputs for outputs. Given a valid grammar, the
system guarantees that its puzzles are solvable.

Keywords: procedural content generation · puzzles · interactive narra-
tive · authoring tools

1 Introduction

Narrative puzzles can be defined as puzzles that form part of the progression of
a narrative, whose solutions involve exploration and logical as well as creative
thinking. They are a key component of adventure and story-driven games, and
often feature in large open world games, including RPGs. Narrative puzzles can
be viewed as temporary obstacles to the story’s advancement; though they do
not always have to be solved in a precise order, certain puzzle sequences generally
need to be solved before proceeding to others. Typically, good narrative puzzles
involve making logical connections, which may not be immediately obvious, but
which ultimately comprise a satisfying solution. Puzzlers typically find solutions
by exploring the environment and investigating ways in which objects can be
manipulated. Examples of narrative puzzle patterns identified by Fernández-
Vara et al. [3] are: (a) Figuring out which item a character desires, usually
leading to a reward in exchange; (b) Logically combining two objects to change
their properties, or to create a new object; (c) Disassembling an object into useful
components; (d) Saying ‘the right thing’ to convince a character to provide aid;
and (e) Acquiring a key to open a new area.

Due to space constraints, we are not able to present a detailed review of
related work here, but we refer the reader to our recent survey of procedural
generation of puzzles [2], which contains a section on narrative puzzles, including
Puzzle-Dice [3], as well as work by Dart and Nelson [1] and van der Linden et
al. [4].



2 B. De Kegel, M. Haahr

2 Design

Our system aims to improve replayability of smaller story-driven games as well
as offer way to improve the narrative engagement of games with large open
worlds and a high degree of procedural content. Our approach is inspired by (and
improves upon) Puzzle-Dice [3], specifically in terms of expressivity, usability and
scalability, while maintaining the guarantee of solvability.

2.1 Core Concepts

The approach is based on a context-free grammar that defines possible behaviors
of game items. The puzzle generator integrates with a game world to create
puzzles on the fly based on the current state of the world. There are three
components that feed into the generator: a database of all items that can be
used in puzzles, a set of grammar rules that describe the space of all possible
puzzles, and a list of the game areas. Several core concepts form the basis of
these components:

– Items: Conceptual game objects which are defined by their type(s) and
properties.

– Properties: Named characteristics of Items, which have a value of specific
value type.

– Rules: Possible in-game actions, composed of an output Term, a set of by-
product Terms, an Action and a set of input Terms (see figure 1).

– Terms: The main units out of which Rules are composed, each is defined
by a single type and an optional list of properties.

– Action: The unit of a Rule that described the player’s action in carrying
out a rule.

– Area: A single connected space that forms part of the game world; used to
compartmentalize the puzzle generation.

The defintion of the components is flexible in terms of the designer-defined
content they can support, allowing the generator to be applied to a range of
different types of games.

Main output 
term

By-products
terms+ Input 

termsAction +

Fig. 1. Abstract representation of the general structure of a rule.

The generator uses the set of production rules that constitute the grammar
in a left to right direction to generate a puzzle backwards from an end goal. The
backwards process ensures the puzzle is solvable. In a game that incorporates
the generated puzzles, the same rules—but used in the right to left direction—
function as game logic.



Procedural Generation of Narrative Puzzles 3

2.2 The Puzzle Items

A puzzle item is a conceptual representation of a tangible object that can be
used as part of a generated puzzle. Each puzzle item has a unique name, an
optional list of properties, and an associated visual representation, e.g., a Unity
prefab. There may be more than one puzzle item for an object that has multiple
states, e.g., a tree in summer and that same tree in autumn. These specificities
in item definitions are left open to the game designer.

Items’ properties are defined by their name and type; the type—string,
boolean or integer—determines the legal values for the property. Properties are
freely defined by the game designer and can be tailored to the needs of the puzzle
game. There are no required properties; if a property is not defined for an item,
the generator assumes it does not have this property, or for boolean properties,
assumes the value is False. For example, not specifying the carryable property
is equivalent to marking an item as ‘not carryable.’

There are several special properties which have explicit logic attached to
them. One is the carryable property; an item is queried in-game for this specific
property to determine whether it can be added to a player’s inventory.

Another special property is the isa property, which can be used to define
all the categories (i.e., super classes) a certain item belongs to; e.g., a PineTree
might have the isa properties Tree and Plant. The value associated with an
isa property may or may not be the name of another item in the puzzle items
database. The name of an item is automatically considered an isa property of
that item—it defines the most specific category the item belongs to. In addition,
every puzzle item is automatically considered to be a sub-type of the type Item.
The isa property allows for hierarchies among the types of puzzle items, which
is central to the functioning of the grammar rules discussed in section 2.3.

The contains property is also a special case—though it is a string property,
its value is interpreted as a puzzle item. As will be discussed in section 2.3, this
property is particularly important in the definition of rules, which can refer to
transient item states.

Finally there are two special properties that can be used to restrict the possi-
ble locations of puzzle items. The notSpawnable property, indicates that a puzzle
item can only be used if it is already part of the game world, and will not be
instantiated as a rule output, e.g., a large lake. The area property can be used
to specify the legal areas for spawning and/or using an item, allowing the game
designer to control which items may be included as part of a puzzle on a per-area
basis.

2.3 The Grammar

The grammar, which comprises of a set of production rules, describes the space
of all possible puzzles. Each rule describes a relationship between a set of inputs
and a set of outputs, in a format that is loosely based on the format of rules
that make up a context-free grammar. The rules serve a dual purpose: they are



4 B. De Kegel, M. Haahr

used by the generator to create puzzles and as game logic. The general format
of a rule is as follows:

itemType[properties0...n]1...n ::= action itemType[properties0...n]1...n (1)

In a context-free grammar, all the productions are one-to-one, one-to-many
or one-to-none. The rules that comprise the puzzle grammar fall under the first
two categories. Production rules are read from left to right and can be interpreted
as breaking down an output into its input(s), or replacing an output with one or
more inputs. A puzzle, in the form of a tree structure, is created by iteratively
(recursively) decomposing outputs, starting from an end goal.

In practice, the rules can (and often do) have multiple outputs because the
right and left hand sides of the rule describe which items exist in the gameworld,
and in what state, before and after the rule is applied. For generating a puzzle
only the first output is important, and the others are considered by-products.
For example, in rule 2, which expresses chopping down a tree, the axe is not an
outcome, but it is important to account for the fact that it was not consumed as
part of the execution of the rule. Each input (right-hand side term), is considered
to be destroyed if it does not appear as an output (left-hand side term). The
exception to this is an input that appear as the value of the contains property
for an output—these are also not considered destroyed. Rule 3 shows an example
of this type of behavior.

TreeStump Axe ::= ChopDown Tree Axe (2)

Container[contains : Eggs] ::= Gather Eggs Container (3)

The output of each rule is thus one or more terms, while the input is composed
of at least one term, as shown in figure 1. Terms represent the non-terminals of
the grammar while the puzzle items represent the terminals. There are implicit
rules for replacing terms with specific puzzle items—terms can be seen as boxes
with descriptions of what kind of puzzle item could be placed inside.

The terminals (puzzle items) are not directly used in the authoring of the
grammar rules; a designer only looks at linking terms (non-terminals) to other
terms. Internally, the puzzle generation system contains logic for determing
which non-terminals could be replaced with terminals from the item database.
The grammar is only valid if each input term can be matched to at least one
output term in a different rule, or at least one puzzle item. Designers should be
conscious of this when authoring the puzzle rules.

Terms have an item type and an optional list of properties. The item type
corresponds to the previously described isa property and can be specific (e.g.,
PineTree) or general (e.g., Plant). The more general the type, the more puzzle
items have the potential to be matched to a term. The special type Item can be
used for terms that are allowed to be replaced by any puzzle item.

The properties associated with a term are fundamentally the same as those
for a puzzle item. For a puzzle item to match a term it must be of the same type
or a sub-type as the term’s type, and it must include all properties of the term
(though it can have many more properties than those required by the term).



Procedural Generation of Narrative Puzzles 5

Besides inputs and outputs, each rule must also have an action, which can
be considered a terminal. This action is only used as part of the second purpose
of the rules, i.e., as game logic, and has no bearing on the puzzle generation.
The action is associated with the first input term, and as such, it is important to
consider the order of the input terms; for example in rule 2, the action ChopDown
should appear attached to the Tree term, rather than the Axe term.

2.4 The Puzzle Areas

Each puzzle area corresponds to a connected area in the game world and must
have an associated goal. The goal is used by the generator as the starting point
for generating a puzzle for that area. A designer can associate multiple possible
goals with each area in order to increase the possibility space of puzzles that can
be generated for that area. The format of an area goal is the same as that of a
single term in a rule of the grammar. Each goal specifies a type of puzzle item
that must be obtained, and an optional list of properties that must be fulfilled
for that item. The generator checks that the goal cannot be satisfied by any
intermediate items that are chosen as part of the puzzle, as this would result in
a player completing a puzzle prematurely.

Besides a goal, a puzzle area has a unique name, a list of connected areas,
and maximum puzzle depth. The maximum depth refers to the depth of the
tree structure representation of the puzzle that is created by the generator.
Puzzle areas can be predefined, or in the case of a procedurally generated game,
they could also be automatically defined at run-time based on environmental
attributes. The player’s current in-game area is tracked by the generator and
used to spawn puzzle items pick area appropriate rules.

2.5 Puzzle Generation

The puzzle generator works by recursively generating inputs for outputs using
the set of rules that make up the puzzle grammar. The rules are used in the
left to right direction as production rules and do not take into account the
by-product terms. Puzzle generation is done live, i.e., while the game is being
played, on the basis of currently accessible areas and items. At a high level
(between areas), generation is running forwards throughout the game, but at a
low level (within each area), generation runs backwards. This forward-backwards
combination ensures solvability, quality and lack of repetition for the generated
puzzles.

At the start of the game, a puzzle is generated for the area that has been
designated as the start area. Finishing a puzzle for one area, (i.e., achieving
the area’s goal), causes all its connected areas to become unlocked, and triggers
the generation of puzzles for those newly available areas. This forwards part of
the algorithm can branch off into different tracks depending on the specified
connections between areas. The system maintains each of the available areas
independently, so multiple puzzles can be in progress at the same time. The
overall forward direction of the algorithm allows for scenarios in which an item



6 B. De Kegel, M. Haahr

that is needed to solve a puzzle for one area must be retrieved from another
area.

When generating a puzzle for an area, the algorithm begins by finding a rule
with a left hand side term that matches the current area’s goal. The area goal is
analogous to the grammar’s start symbol. From that starting rule, the generator
continues trying to substitute right hand side terms for other terms until no
suitable rule can be found to perform such a substitution, or the area’s depth
limit is reached. At that point, the generator adds the puzzle item (terminal) that
matches the last term to the game world. The rules used for the substitutions
are recursively chained together into a tree structure that defines the entirety
of the created puzzle. The items spawned in the world correspond to the input
terms for the rules that make up the leaves of that tree.

An example of a generated puzzle is shown in figure 2, followed by the rules
that would be chained together to create that puzzle. In reality, it is the rules
that make up the nodes of the tree, rather than the terms, but the terms make
for a clearer representation of the structure. The narrative solution to this puzzle
is as follows: first the player must assemble a disguise out of glasses and a fake
moustache and set of a car alarm to distract the security guard; these events can
happen in either order. Then the player can steal the distracted security guard’s
badge, and proceed to unlock the safe with it. Finally, once the safe is unlocked,
the player can open it and access the gold (the goal of the puzzle).

Gold
Safe

[unlocked]
Disguise

Security
[distracted]

Badge

Safe
[locked]

Security

Car alarm

Glasses

Fake 
moustache

Fig. 2. An example puzzle tree.

Gold Safe ::= Open Safe[locked : False] (4)

Safe[locked : False] Badge ::= Unlock Safe[locked : True] Badge (5)

Badge Security ::= Steal Security[distracted : True] Disguise (6)

Security[distracted : True] ::= Trigger CarAlarm Security[distracted : False]
(7)

Disguise ::= CreateDisguise Glasses FakeMoustache (8)

Matching Terms Terms can be matched to other terms according to their
types and properties. The properties must be an exact match, but the type of
the output term can be the same or more general than the type of the input



Procedural Generation of Narrative Puzzles 7

term. For example, an input term of type Tree could be replaced by a rule with
an output term of type Tree or Plant but not by one of type PineTree.

Notably, the generation algorithm does not wait until it reaches a terminal
to pick a matching puzzle items for a term but rather attempts to find one as
early as possible. The reason is that this allows for the use of more specific rules,
widening the scope of possible puzzles. Terms become more specific as a result
of an associated puzzle item, and can then be matched to a wider variety of
output terms in other rules. For example, a rule with an input term with type
Tree, as in the previous example, might pick a PineTree item as the matching
puzzle item and change its type accordingly.

When an item replacement is found for a term, that item is passed up the
tree to previously visited rules, and attached to corresponding terms. In this
way, each term in each rule in the puzzle tree structure will have an associated
puzzle item when generation completes, for use during the solving of the puzzle.

Generation per Game Area The game areas are modular but conscious of
their context. New puzzles are created on a per area basis, with the generation
algorithm taking into account all currently accessible areas, all items currently
in the world, and all items in the player’s inventory. The generator ensures that
puzzle items chosen for a term are accessible and appropriate, making use of the
items’ area and notSpawnable properties. Additionally, generation will terminate
upon reaching an intermediate puzzle item that already exists in the world to
prevent recreating a puzzle that the player has already solved, or creating a
puzzle that is trivial, because the player already has the goal item.

Area 1

Item Area 1 
Goal

Item

Area 2
Item

Area 2 
Goal

Item

Item

Area 3

Item

Area 3
Goal

Item

Item

Fig. 3. A layout of how puzzles in different game areas can be interconnected.

Figure 3 shows how puzzles in each area can re-use items from previously
visited areas. For example, the goal for area 1 is re-used as one of the input
items needed to acquire the goal for area 2, and one of the items from area 2
can be re-used as an input to a puzzle in area 3. Puzzles are generated per area
in a linear order for this example, e.g., the puzzles for area 2 are created after
the goal for area 1 has been achieved.

We do not make the assumption that the world is empty at the start—
existing objects in the scene can be included in the puzzles, if they are identified
as puzzle items. This is an important design choice for integrating puzzles into an



8 B. De Kegel, M. Haahr

environment. Puzzle items could correspond to environmental features, such as
a lake, or large static structures, which are more easily placed in the game world
as part of scene design, allowing for freedom in the construction of the game
world. One reason for this choice is the potential use of this puzzle generator
in a game with a procedurally generated environment, such as Minecraft or No
Man’s Sky. In these games, the puzzle generator could run as a separate layer on
top of the existing generator and construct puzzles featuring already spawned
game objects, environmental features and NPCs.

The puzzle generator also tracks the depth of the tree that represents the
current puzzle, allowing for a designer specified puzzle length. The number of
actions needed to solve a puzzle is also determined by the breadth of the tree but
due to a low average branching factor (most rules will have one or two inputs),
depth influences the length of the solution sequence more than breadth.

2.6 Puzzle Solving

Next to puzzle generation, the grammar rules also provide the in-game logic
that allows a player to solve a generated puzzle. For this purpose the rules are
used from right to left; the inputs on the right hand side must be satisfied in
order to produce the output(s) on the left hand side. Inputs are satisfied when
they are co-located, which could be through use of an inventory system, and
have all of the required properties. When the inputs for a rule are satisfied,
the action to execute that rule is provided to the player. Only when the player
chooses that action is the rule actually executed, i.e., are its inputs replaced
by its outputs. While the generator only looked at the first (main) output, each
output is important in-game because they indicate which items should be created
and/or destroyed.

3 Conclusion

This paper presented a way of procedurally generating narrative puzzles that
builds onto what was achieved with the Puzzle-Dice system. The approach can
be integrated into existing games, given that the game designer defines puzzle
items, rules and game areas as they pertain to his/her game. The difficulty of
the puzzles is determined by the designer. As a preliminary evaluation, we have
developed a small proof-of-concept game in Unity using the narrative puzzle
generator. The game was made with free 3D assets and set in an environment
with two areas; a grass field, and a river bank. The areas contained game objects
designated as puzzle items, including trees, corn stalks and a well. On a given
playthrough, each of these may or may not be used in the puzzle (depending
on the puzzle created), but it is always possible to interact with the items. This
adds consistency to the world, and can throw the player off in terms of what
items he/she needs to complete the puzzles for an area. In future work, we plan
to create a bigger game and evaluate the approach through a user study.



Procedural Generation of Narrative Puzzles 9

References

1. Isaac Dart and Mark J Nelson. Smart terrain causality chains for adventure-game
puzzle generation. In 2012 IEEE Conference on Computational Intelligence and
Games (CIG), pages 328–334. IEEE, 2012.

2. Barbara De Kegel and Mads Haahr. Procedural puzzle generation: A survey. IEEE
Transactions on Games, 2019.

3. Clara Fernández-Vara and Alec Thomson. Procedural generation of narrative puz-
zles in adventure games: The puzzle-dice system. In Proceedings of the The third
workshop on Procedural Content Generation in Games, page 12. ACM, 2012.

4. Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. Procedural generation
of dungeons. IEEE Transactions on Computational Intelligence and AI in Games,
6(1):78–89, 2014.


