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Abstract. Parkinson’s disease patients develop different speech impair-
ments that affect their communication capabilities. The automatic as-
sessment of the speech of the patients allows the development of com-
puter aided tools to support the diagnosis and the evaluation of the
disease severity. This paper introduces a methodology to classify Parkin-
son’s disease from speech in three different languages: Spanish, German,
and Czech. The proposed approach considers convolutional neural net-
works trained with time frequency representations and a transfer learning
strategy among the three languages. The transfer learning scheme aims
to improve the accuracy of the models when the weights of the neural
network are initialized with utterances from a different language than
the used for the test set. The results suggest that the proposed strat-
egy improves the accuracy of the models in up to 8% when the base
model used to initialize the weights of the classifier is robust enough.
In addition, the results obtained after the transfer learning are in most
cases more balanced in terms of specificity-sensitivity than those trained
without the transfer learning strategy.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the
progressive loss of dopaminergic neurons in the mid-brain producing several mo-
tor and non-motor impairments in the patients [1]. Motor symptoms include
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among others, bradykinesia, rigidity, resting tremor, micrographia, and different
speech impairments. The speech impairments observed in PD patients are typ-
ically grouped as hypokinetic dysarthria, and include symptoms such as vocal
folds rigidity, bradykinesia, and reduced control of muscles and limbs involved in
the speech production. The effects of dysarthria in the speech of PD patients in-
clude increased acoustic noise, reduced intensity, harsh and breathy voice quality,
increased voice nasality, monopitch, monoludness, speech rate disturbances, im-
precise articulation of consonants [2], and involuntary introduction of pauses [3].
Clinical observations in the speech of patients can be objectively and automati-
cally measured by using computer aided methods supported in signal processing
and pattern recognition with the aim to address two main aspects: (1) to sup-
port the diagnosis of the disease by classifying healthy control (HC) subjects and
patients, and (2) to predict the level of degradation of the speech of the patients
according to a specific clinical scale.

Most of the studies in the literature to classify PD from speech are based
on computing hand-crafted features and using classifiers such as support vector
machines (SVMs) or K-nearest neighbors (KNN). For instance, in [4], the au-
thors computed features related to perturbations of the fundamental frequency
and amplitude of the speech signal to classify utterances from 20 PD patients
and 20 HC subjects, Turkish speakers. Classifiers based on KNN and SVMs
were considered, and accuracies of up to 75% were reported. Later, in [5] the
authors proposed a phonation analysis based on several time frequency repre-
sentations to assess tremor in the speech of PD patients. The extracted features
were based on energy and entropy computed from time frequency representa-
tions. Several classifiers were used, including Gaussian mixture models (GMMs)
and SVMs. Accuracies of up to 77% were reported in utterances of the PC-GITA
database [6], formed with utterances from 50 PD patients and 50 HC subjects,
Colombian Spanish native speakers. The authors from [7] computed features to
model different articulation deficits in PD such as vowel quality, coordination
of laryngeal and supra-laryngeal activity, precision of consonant articulation,
tongue movement, occlusion weakening, and speech timing. The authors studied
the rapid repetition of the syllables /pa-ta-ka/ pronounced by 24 Czech native
speakers, and reported an accuracy of 88% discriminating between PD patients
and HC speakers, using an SVM classifier. Additional articulation features were
proposed in [8], where the authors modeled the difficulty of PD patients to
start/stop the vocal fold vibration in continuous speech. The model was based
on the energy content in the transitions between unvoiced and voiced segments.
The authors classified PD patients and HC speakers with speech recordings in
three different languages (Spanish, German, and Czech), and reported accuracies
ranging from 80% to 94% depending on the language; however, the results were
optimistic, since the hyper-parameters of the classifier were optimized based on
the accuracy on the test set. Another articulation model was proposed in [9]. The
authors considered a forced alignment strategy to segment the different phonetic
units in the speech utterances. The phonemes were segmented and grouped to
train different GMMs. The classification was performed based on a threshold of
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the difference between the posterior probabilities from the models created for
HC subjects and PD patients. The model was tested with Colombian Spanish
utterances from the PC-GITA database [6] and with the Czech data from [10].
The authors reported accuracies of up to 81% for the Spanish data, and of up
to 94% for the Czech data.

In addition to the hand-crafted feature extraction models, there is a grow-
ing interest in the research community to consider deep learning models in the
assessment of the speech of PD patients [11,12,13]. Deep learning methods have
the potential to extract more abstract and robust features than those manu-
ally computed. These features could help to improve the accuracy of different
models to classify pathological speech, such as PD [14]. A deep learning based
articulation model was proposed in [12] to model the difficulties of the patients
to stop/start the vibration of the vocal folds. Transitions between voiced and
unvoiced segments were modeled with time-frequency representations and con-
volutional neural networks (CNNs). The authors considered speech recordings of
PD patients and HC speakers in three languages: Spanish, German, and Czech,
and reported accuracies ranging from 70% to 89%, depending on the language.
However, in a language independent scenario, i.e., training the CNN with utter-
ances from one language and testing with the remaining two, the results were
not satisfactory (accuracy< 60%).

The classification of PD from speech in different languages has to be carefully
conducted to avoid bias towards the linguistic content present in each language.
For instance, Czech and German languages are richer than Spanish language
in terms of consonant production, which may cause that it is easier to produce
consonant sounds by Czech PD patients than by Spanish PD patients. Despite
these language dependent issues, the results in the classification of PD in dif-
ferent languages could be improved using a transfer learning strategy among
languages, i.e., to train a base model with utterances from one language, and
then, to perform a fine-tuning of the weights with utterances from the target
language [15]. Similar approaches based on transfer learning have been recently
considered to classify PD using handwriting [16]. In the present study, we pro-
pose a methodology to classify PD via a transfer learning strategy with the aim
to improve the accuracy in different languages. CNNs trained with utterances
from one language are used to initialize a model to classify speech utterances
from PD patients in a different language. The models are evaluated with speech
utterances in Spanish, German, and Czech languages. The results suggest that
the use of a transfer learning strategy improved the accuracy of the models over
8% with respect to those obtained when the model is trained only with utterance
from the target language.

2 Materials and methods

2.1 Data

Speech recordings of patients in three different languages are considered: Spanish,
German, and Czech. All of the recordings were captured in noise controlled
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conditions. The speech signals were down-sampled to 16 kHz. The patients in
the three datasets were evaluated by a neurologist expert according to the third
section of the movement disorder society, unified Parkinson’s disease rating scale
(MDS-UPDRS-III) [17]. Table 1 summarizes the information about the patients
and healthy speakers.

Spanish The Spanish data consider the PC-GITA corpus [6], which contains
utterances from 50 PD patients and 50 HC, Colombian Spanish native speakers.
The participants were asked to pronounce a total of 10 sentences, the rapid
repetition of /pa-ta-ka/, /pe-ta-ka/, /pa-ka-ta/, /pa/, /ta/, and /ka/, one text
with 36 words, and a monologue. All patients were in ON state at the time of
the recording, i.e., under the effect of their daily medication.

German Speech recordings of 88 PD patients and 88 HC speakers from Ger-
many are considered [18]. The participants performed four speech task: the rapid
repetition of /pa-ta-ka/, 5 sentences, one text with 81 words, and a monologue.

Czech A total of 100 native Czech speakers (50 PD, 50 HC) were considered [19].
The speech tasks performed by the participants include the rapid repetition of
the syllables /pa-ta-ka/, a read text with 80 words, and a monologue.

Table 1. Information of the speakers in the three datasets. Subjects: Number of
speakers. G.: gender (M. male or F. female). T: Time after diagnosis in years.

G
Spanish German Czech

PD HC PD HC PD HC

Subjects
M 25 25 47 44 30 30
F 25 25 41 44 20 20

Range of age
M 33-81 31-86 44-82 26-83 43-82 41-77
F 49-75 49-76 42-84 28-85 41-72 40-79

Age
M 61.3 (11.4) 60.5 (11.6) 66.7 (8.7) 63.8 (12.7) 65.3 (9.6) 60.3 (11.5)
F 60.7 (7.3) 61.4 (7.0) 66.2 (9.7) 62.6 (15.2) 60.1 (8.7) 63.5 (11.1)

T
M 8.7 (5.9) – 7.0 (5.5) – 6.7 (4.5) –
F 12.6 (11.6) – 7.1 (6.2) – 6.8 (5.2) –

MDS-UPDRS M 37.8 (22.1) – 22.1 (9.9) – 21.4 (11.5) –
-III F 37.6 (14.1) – 23.3 (12.0) – 18.1 (9.7) –

2.2 Segmentation

Speech signals are analyzed based on the automatic detection of onset and offset
transitions, which model the difficulties of the patients to start/stop the move-
ment of the vocal folds. The detection of the transitions is based on the presence
of the fundamental frequency of speech in short-time frames, as it was shown
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in [8]. The border between voiced and unvoiced frames is detected, and 80 ms of
the signal are taken to the left and to the right, forming segments with 160 ms
length. The transition segments are modeled with two different approaches: (1)
a baseline model based on hand-crafted features, which are classified using an
SVM, and (2) a model based on time-frequency representations used as input to
train a CNN, which then will be used for the transfer learning strategy. Further
details are given in the following subsections.

2.3 Baseline model

The features extracted from the transitions include 12 Mel-Frequency Cepstral
Coefficients (MFCCs) with their first and second derivatives, and the log energy
of the signal distributed into 22 Bark bands. The total number of descriptors
corresponds to 58. Four statistical functionals (mean, standard deviation, skew-
ness, and kurtosis) are computed for each descriptor, obtaining a 232-dimensional
feature-vector per utterance. The classification of PD patients and HC speak-
ers is performed with a radial basis SVM with margin parameter C = 10 and
a Gaussian kernel with parameter γ = 0.0001. The SVM is tested following a
10-fold Cross-Validation strategy, speaker independent.

2.4 CNN model

Time frequency representations based on the short-time Fourier transform
(STFT) are used as input to a CNN, which extract the most suitable features
to discriminate between PD patients and HC subjects. The STFT with 256 fre-
quency bins is computed for each segmented transition, for a window length of
16 ms and a step-size of 4 ms, forming 41 time frames per transition. The ob-
tained spectrogram is transformed into the Mel-scale using 80 filters, forming
an spectrogram with a size of 80×41, which is used to train the CNNs. The
architecture of the implemented CNN is summarized in Table 2. It consists of
four convolutional and max-pooling layers, dropout to regularize the weights,
and two fully connected layers followed by the output layer to make the final
decision using a softmax activation function. The number of feature maps on
each convolutional layer is twice the previous one in order to get more detailed
representations of the input space in the deeper layers. The CNN is trained using
the the cross-entropy as the loss function, using an Adam optimizer [20].

2.5 Transfer learning

Transfer learning allows to use a neural network trained for one task to be used
in another domain. We use transfer learning to classify patients and healthy
speakers in three different languages. The CNN architecture described before is
used to train a CNN with utterances from one language. Then, the pre-trained
model is used as a base to initialize two different models with the remaining
languages. Figure 1 summarizes this procedure.
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Table 2. Architecture of the CNN implemented in this study.

CNN Architecture Input size Output size

Conv (1x4x3,1)+dropout 1x80x41 4x80x41
Max Pool(2,2) 4x80x41 4x40x20
Conv (4x8x3,1)+dropout 4x40x20 8x40x20
Max Pool(2,2) 8x40x20 8x20x10
Conv (8x16x3,1)+dropout 8x20x10 16x20x10
Max Pool(2,2) 16x20x10 16x10x5
Conv (16x32x3,1)+dropout 16x10x5 32x10x5
Max Pool(2,2) 32x10x5 32x5x2
Lineal(320,128)+dropout 32x5x2 1x128
Lineal(128,64)+dropout 1x128 1x64
Lineal(64,2) 1x64 1x2

Pre-trained CNN model

Base model

4x80x41 4x40x20
  8x40x20

8x20x10
16x20x10

16x10x5

32x10x5 32x5x2

12
8

64

Base
language

Conv 1
    Conv 2 Conv 3

Conv 4

New model

Target
language

Transfer parameters

Fig. 1. Transfer learning strategy proposed in this study to classify PD from speech
with utterances from different languages

3 Experiments and results

The experiments are divided as follows: First, the baseline and the CNN models
are trained considering each language individually. Then, the trained CNNs for
each language are used as a base model in the transfer learning strategy in
order to improve the accuracy in the other two languages. All speech exercises
performed by the participants were considered for the classification strategy. The
final decision for each speaker was obtained by a majority voting strategy among
the different speech exercises.

3.1 Baseline and individual CNN models

Table 3 shows the results obtained for the baseline and the CNNs trained for
each language individually. Similar accuracies are obtained between the baseline
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and the CNN model for Spanish language, which also exhibit the highest ac-
curacy among the three languages. Note that the highest accuracy for German
language was obtained with the baseline model. Conversely, for Czech language
the CNN produces the highest accuracy. Note also that for the three languages,
the results are unbalanced towards one of the two classes according to the speci-
ficity and sensitivity values. The difference in the results obtained among the
three languages can be explained considering the information provided in Ta-
ble 1. For the patients in the Spanish language, the average MDS-UPDRS-III
score is higher compared with the German and Czech patients, i.e, there are
patients with higher disease severity in the Spanish data compared to German
and Czech patients.

Table 3. Classification results for the baseline and CNN models trained in three dif-
ferent languages. Acc: Accuracy. Sen: Sensitivity. Spe: Specificity. MCC: Matthews
correlation coefficient.

Baseline CNN
Language Acc (%) Sen (%) Spe (%) MCC Acc (%) Sen (%) Spe (%) MCC

Spanish 73.7 (13.0) 74.5 (16.7) 77.1 (16.2) 0.50 71.0 (15.9) 74.0 (25.0) 68.0 (28.6) 0.42
German 69.3 (9.9) 71.8 (12.4) 68.7 (10.0) 0.39 63.1 (11.7) 43.1 (38.0) 83.1 (17.7) 0.30
Czech 61.0 (12.5) 64.5 (19.5) 60.2 (11.9) 0.27 68.5 (14.1) 94.0 (13.5) 42.0 (33.2) 0.43

3.2 Transfer language among languages

The results with the transfer learning strategy among languages are shown in
Table 4. A CNN trained with utterances from the base language is fine-tuned
with utterances from the target language. Note that the accuracy improved
considerably when the target languages are German and Czech, with respect to
the results observed for baseline and the CNN in Table 3. The accuracy improved
over 8% for German (from 69.3% in the baseline to 77.3% when the model is fine-
tuned from Spanish), and over 4.1% for Czech language (from 68.5% with the
initial CNN to 72.6% when the model is fine-tuned from Spanish). Particularly,
the highest accuracy for German and Czech languages is obtained when the base
language is Spanish. This can be explained considering that Spanish speakers
have the best initial separability, thus, the other two languages benefit from the
best initial model. The results obtained with the transfer learning strategy among
languages are also more balanced in terms of the specificity and sensitivity than
the observed in the baseline and with the initial CNNs. The standard deviation
of the transfered CNNs is also lower, which leads to an improvement in the
generalization of the models.

The receiver operating characteristic (ROC) curves from Figure 2 show with
more detail the effect of the transfer learning strategy in the performance of the
CNNs to classify PD speakers in different languages. The area under the ROC
curve (AUC) when the target language is Spanish (Figure 2A) is slightly higher
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Table 4. Classification results for the transfer learning among languages using CNNs.
Acc: Accuracy. Sen: Sensitivity. Spe: Specificity. MCC: Matthews correlation coeffi-
cient. Base lang: Language used to pre-train the CNN model. Target lang.: Language
used for transfer learning from the base model.

Base lang. Target lang. Acc (%) Sen (%) Spe (%) MCC

German
Spanish

70.0 (12.5) 62.0 (19.9) 78.0 (23.9) 0.41
Czech 72.0 (13.1) 67.0 (11.6) 78.0 (23.9) 0.46

Spanish
German

77.3 (11.3) 86.2 (13.8) 68.3 (14.3) 0.57
Czech 76.7 (7.9) 87.5 (11.0) 66.0 (15.6) 0.55

Spanish
Czech

72.6 (13.9) 82.0 (14.8) 62.0 (28.9) 0.46
German 70.7 (14.5) 80.0 (16.3) 62.5 (26.3) 0.38

when the base language is Czech. When the target languages are German and
Czech (Figure 2B and Figure 2C) the highest AUC is obtained when the base
model is trained with Spanish utterances.

A. B. C.
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Fig. 2. ROC curves for the transfer learning among languages, when the target lan-
guage is A. Spanish, B. German, and C. Czech.

4 Conclusion

This study proposed the use of a transfer learning strategy based on fine-tuning
to classify PD from speech in three different languages: Spanish, German, and
Czech. The transfer learning among languages aimed to improve the accuracy
when the models are initialized with utterances from a different language than
the one used for the test set. Mel-scale spectrograms extracted from the transi-
tions between voiced and unvoiced segments are used to train a CNN for each
language. Then, the trained models are used to fine-tune a model to classify
utterances in the remaining two languages.

The results indicate that the transfer learning among languages improved
the accuracy of the models in up to 8% when a base model trained with Spanish
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utterances is used to fine-tune a model to classify PD German utterances. The
results obtained after the transfer learning are also more balanced in terms of
specificity-sensitivity and have a lower variance. In addition, the transfer learning
among languages scheme was accurate to improve the accuracy in the target
language only when the base model was robust enough. This was observed when
the model trained with Spanish utterances was used to initialize the models for
German and Czech languages.

Further experiments will include the development of more robust base mod-
els using hyper-parameter optimization strategies like those based on Bayesian
optimization. In addition, the base models will be trained considering two of the
languages instead of only one of them. The trained models will also be evaluated
to classify the speech of PD patients in several stages of the disease based on the
MDS-UPDRS-III score, or based on their dysarthria severity [21]. Further exper-
iments will also include transfer learning among diseases, for instance training
a base model with utterances to classify PD, and use such a model to initialize
another one to classify other neurological diseases such as Hungtinton’s disease.
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