
Adapting control policies from simulation to
reality using a pairwise loss

Ulrich Viereck, Xingchao Peng, Kate Saenko, and Robert Platt

Abstract This paper proposes an approach to domain transfer based on a pairwise
loss function that helps transfer control policies learned in simulation onto a real
robot. We explore the idea in the context of a “category level” manipulation task
where a control policy is learned that enables a robot to perform a mating task in-
volving novel objects. We explore the case where depth images are used as the main
form of sensor input. Our experimental results demonstrate that proposed method
consistently outperforms baseline methods that train only in simulation or that com-
bine real and simulated data in a naive way.

1 Motivation and Problem Statement

Fig. 1 Our goal is to learn a controller that uses
depth image feedback to mate the cap to the bot-
tle in the presence of clutter. Experimental setup
on UR5 robot with a Intel RealSense depth sensor
mounted as shown.

Recently, there has been a lot of in-
terest in using deep neural networks
to learn “pixels-to-torques” visuomotor
controllers: robotic controllers that take
sequential image data as input and pro-
duce low level motor commands as out-
put. Ideally, we would learn these con-
trollers with training data collected us-
ing real robotic hardware [5]. However,
this approach is rarely feasible because
of the large amounts of training expe-
rience typically required to train deep
neural networks. Instead, it is conve-
nient to learn pixels-to-torques control
policies using simulated data.

Unfortunately, this exposes us to the dataset shift problem [7]. When the sim-
ulation is not sufficiently accurate, then the control policy learned in simulation
may not work well in reality. There are two types of simulation errors that typically
can cause domain shift problems: 1) errors simulating images that the robot would

Ulrich Viereck, Robert Platt
College of Computer and Information Science, Northeastern University, e-mail:
{uliv,rplatt}@ccs.neu.edu

Xingchao Peng, Kate Saenko
Department of Computer Science, Boston University, e-mail: {xpeng,saenko}@bu.edu

1

ar
X

iv
:1

80
7.

10
41

3v
2

 [
cs

.R
O

]
 2

6
O

ct
 2

01
8

2 Ulrich Viereck, Xingchao Peng, Kate Saenko, and Robert Platt

observe, and 2) errors simulating real world contact and frictional dynamics. This
paper limits consideration to non-contact tasks and therefore the focus is on domain
shift errors caused by image simulation and depth image simulation in particular.

In this paper, we propose an approach to transferring visuomotor control policies
learned on simulated depth data to real world observations. The key idea is to reduce
the gap between simulation and reality by augmenting the simulated data used to
train the system with a small amount of real robot data. Each piece of real robot
data is paired with a piece of simulated data that corresponds to the same robot
state. We train the neural network using a loss function that has two terms: a task
loss that encodes the desired robotic behavior and a pairwise loss that penalizes
networks that do not represent real and simulated data the same way.

We make two contributions relative to prior work: 1) we propose a neural net-
work architecture that combines the pairwise loss approach to domain transfer with
a pixels-to-torques controller; 2) we characterize the method for depth image data
rather than for RGB data. Unlike [9] which uses the pairwise loss function as part
of the state estimator and only explores single task instances, our approach learns
controllers that can solve “category level” manipulation tasks. We find that the ap-
proach can work well even when the real data is produced in a simplified version of
the actual robotic scenario that is experienced at test time.

2 Related Work

This paper complements a variety of recent literature on simulation-to-reality learn-
ing for robotics tasks. One example is recent work that uses “domain randomiza-
tion” of simulated images to affect better transfer to reality [8]. Another example is
work using GANs to affect the transfer [1]. In contrast, the approach followed here
is simpler than GAN-based approaches and more relevant to depth data than domain
randomization methods.

The most related approach to ours is that of [9]. It also uses the pairwise loss
function to minimize domain shift between simulated and real data. However, it
only explores single task instances (e.g., placing a specific rope object on a specific
scale object), whereas we solve “category level” manipulation tasks where object
shape and size varies from one instance of the task to the next. Furthermore, [9] uses
keypoint prediction on RGB image as an intermediate state representation, whereas
we estimate a distance-to-goal function directly. We also use depth data which tends
to be less affected by domain shift due to lighting and background than RGB data.

Adapting control policies from simulation to reality 3

Fig. 2 Architecture of the controller neural network. The pairwise loss at pool3 favors networks
that give real and simulated images similar representations.

3 Technical Approach

3.1 Controller Network Architecture

We learn a pixels-to-torques controller that takes depth images as input and outputs
manipulator displacements. The controller is based on a method proposed in our
prior work [10] where we estimate a distance function with respect to a goal state
using a neural network. Given an image and a candidate manipulator displacement,
the distance function predicts expected distance-to-goal on the following time step.
We select a manipulator displacement by sampling a set of candidate displacements
and selecting the one that is predicted to move closest to a goal. Essentially, this
method learns a value function over the cross product of observation and action
(depth image and manipulator displacement). However, instead of using reinforce-
ment learning, we train the neural network directly by using supervised learning
with distance targets produced by our simulator. Specifically, we create a dataset
by sampling from a space of possible task scenarios and initial conditions. For each
sample, we simulate the depth image that would be observed and calculate distance-
to-goal after performing the associated displacement.

4 Ulrich Viereck, Xingchao Peng, Kate Saenko, and Robert Platt

3.2 Supervised Domain Adaptation

This paper characterizes a domain transfer technique based on the following loss
function (similar to what was originally proposed in [9]):

L = α ∑
(I,a)∈XS

‖g
(

f (I,a;θ f),θg
)
− y(I,a)‖1

+ β ∑
(I,a)∈XT

‖g
(

f (I,a;θ f),θg
)
− y(I,a)‖1

+ γ ∑
(IS,IT ,a)∈XST

‖ f (IS,a;θ f)− f (IT ,a;θ f)‖2. (1)

Here, we write the neural network as a composition of two functions, f and g. f
denotes the “early” part of the network comprised of convolutional layers that learn
feature representations for the images and actions. g denotes the “late” fully con-
nected layers that encode the regression task. The output of the end-to-end network
for an image I and action (i.e. displacement) a is written g(f (I,a;θ f);θg), where θ f
denotes the parameters of f and θg denotes parameters of g. The loss is evaluated
over a training dataset comprised of two parts: the data from source domain and the
data from the target domain. The source domain consists of simulated images and
actions (I,a) ∈ XS and the associated labels y(I,a) (these are the distance-to-goal
that would result from taking action a from the state that produced image I). The
target domain XT consists of real images and actions paired with the associated la-
bels. The set XST consists of triples (IS, IT ,a) where IS and IT are the simulated-real
image pair and a is the action that was taken. We assume that the cardinality of XS
is much larger than either XT or XST , i.e. that we have many more simulated images
than real images. The first two terms of Equation 1 are called task losses. The third
is the pairwise loss. The first and second task losses are minimized when the neural
network fits the simulated and real data well, respectively. The third is minimized
when the network assigns both simulated and real depth images the same high-level
encoding. The pairwise loss is critical: by “preferring” networks that encode real
and simulated data similarly, this term facilitates good transfer from simulation to
reality. The approach is implemented by the neural network architecture illustrated
in Figure 2. It takes as input a pair of depth images, I1 and I2 (matching paired im-
ages from simulation and reality), and an action a = (x,y)∈R2. It learns a function,
d(I,a) ∈ R>0, that describes the distance between the object in the hand and the
target after displacing the manipulator by a.

3.3 Data Simulation

We train using a combination of real and simulated data. The simulated portion of
the dataset is generated using OpenRAVE [2] to generate 100k 64x64 pixel depth
images. Each depth image is taken for a random robot configuration with clutter ob-

Adapting control policies from simulation to reality 5

jects selected randomly from a set of more than 250 objects and placed randomly in
the vicinity of the target bottle. For each of the 100k scenes, we sample 100 actions
(i.e. hand displacements) and estimate the distance-to-goal that would result if that
action were executed. Finally, we simulate missing pixel noise by setting the value
of each pixel to 0 with a 10% probability. We also collect 7260 labeled real train-
ing images on the robot (UR5, see Figure 1) and measure the corresponding ground
truth distance-to-goal. Importantly, the real images used for training do not have
clutter. As a result, it is easier to obtain training data semi-automatically because it
is unnecessary to reproduce simulated clutter on the real system. These real images
were paired with 7260 simulated images that portray the same robotic state.

3.4 Unsupervised Domain Adaptation

One alternative way to tackle the simulated-to-real knowledge transfer is to leverage
unsupervised domain adaptation algorithms [6]. Assume two distributions p and
q are sampled from simulated and real domain, respectively, we apply Maximum
Mean Discrepancy (MMD) [3] to align p and q. Denoting the reproducing kernel
Hilbert space (RKHS) with a characteristic kernel k by Hk. The MMD dk(p,q) is
defined as

d2
k (p,q) ∆

= ‖EEE p[f (IS)]−EEEq[f (IT)]‖2
Hk

(2)

where IS and IT are unpaired images from source (simulated) and target (real)
domains. The main limitation of the algorithm is the computation complexity is
quadratic. In this paper, following [4][6], we adopt the unbiased estimation of MMD
which can be computed with cost O(n). Specifically,

d2
k (p,q) ∆

=
2
ns

ns/2

∑
i=1

[k(f (I2i−1
S), f (I2i

S))+ k(f (I2i−1
T), f (I2i

T))

− k(f (I2i−1
S), f (I2i

T))− k(f (I2i
S), f (I2i−1

T))]

(3)

where ns is the number of instances in source domain. The training loss with unsu-
pervised domain adaptation is:

L = α ∑
(I,a)∈XS

‖g
(

f (I,a;θ f),θg
)
− y(I,a)‖1

+ γd2
k (p,q). (4)

6 Ulrich Viereck, Xingchao Peng, Kate Saenko, and Robert Platt

Fig. 3 Simulated and real bottles used in our experiments. From left to right: vitamin, pills, soda,
water, 1-gal, laundry, 2-gal, corn starch, peanut butter, sport bottle. Test bottles are shown with
arrows.

4 Experiments

4.1 Task Description

We evaluate this approach using the cap-on-bottle task, where the robot must align
a cap with a bottle opening. This is a challenging task because we are learning a
“category level” manipulation skill where the system must learn to perform the task
for novel object instances in the presence of randomly placed clutter. We test our
methods in simulation, as well as on a real robot using a Robotiq 85 two-fingered
hand mounted on a UR5 arm. The Intel RealSense SR300 is mounted to the UR5
wrist as shown in Figure 1. The RealSense creates depth images that are input to our
controller and used to estimate desired hand displacements.

Testing on the robot proceeds as follows. A test bottle is placed on a table sur-
rounded by clutter intended to make the task more challenging. Most of the clutter
objects are bottles with caps, which makes the task even harder. The bottle cap is
manually placed into the robotic hand. The position of the bottle is unknown to the
algorithm but measured for the purposes of experimental evaluation. The gripper is
initialized to a random offset within a 10cm box centered on the bottle at a height
of 5cm above the table. At each iteration, the controller acquires a depth image,
samples 1k manipulator displacements, moves the gripper in the direction predicted
to reduce distance-to-goal by the most, and moves toward the table by 1cm. After
executing 5 iterations, we measure how close the cap is to the bottle opening.

Adapting control policies from simulation to reality 7

Fig. 4 Depth images generated for training and testing. For training Real no clutter are paired
and augmented by Sim with clutter images. Testing images are Real with clutter images. All these
images show the same 1-gal bottle for comparison of different image domains, but we do not test
on bottles that are in the training set (see Section 4 for details). The Real (RGB) with clutter images
are not used (reference only).

Fig. 5 Test losses on real image test sets with clutter. See text for details.

4.2 Experimental Settings

Our proposed approach is to train the neural network using both the task and pair-
wise loss (supervised adaptation) over both simulated and real images. We compare
this approach against five alternative setups: 1) training the network using only real
images without clutter; 2) training using only real images with clutter; 3) training
using simulated images with clutter; 4) training using simulated images with clutter
with unsupervised adaptation on real images with clutter (MMD method) 5) train-
ing using simulated images with clutter combined with labeled real images without
clutter. Among the five setups, pairwise losses are directly applied to layer pool3.
For the MMD method, we add a fully connected layer with 512 channels after layer
conv1 and apply MMD loss on the top of the fully connected layer. We choose layer
conv1 as it only contains image information, which makes more sense to align, as
opposed to later layers which also contain pose information. We will refer to the
combination of the five methods and the proposed approach as the six “domain
transfer methods”.

8 Ulrich Viereck, Xingchao Peng, Kate Saenko, and Robert Platt

Fig. 6 Average final distances to cap on real image test sets with clutter. See text for details.

Fig. 7 Average success rates on real image test sets with clutter. See text for details.

We evaluate the six domain transfer methods over a set of five different problem
scenarios. In each problem scenario, we train using data derived from a different
object category. The five object categories are: (i) small pill bottles; (ii) soda bot-
tles; (iii) jugs; (iv) bottles with large caps; (v) cornstarch and vitamin bottles. These
categories are illustrated in Figure 3. A separate network is trained for each object
category and is evaluated on as many as four different test objects (indicated in the
figure with arrows). We do not test on objects that happen also to be in the object
category used for training.

4.3 Evaluation

Figures 5, 6, 7 show the results grouped by object category. For example, the “Cate-
gory 1” results show performance for each of the six domain transfer methods eval-
uated on four different test objects (water, 2-gal, peanut, and 1-gal). Figure 5 show
L1 test loss of the learned network (lower is better). Figure 6 shows the average final
distance between cap and bottle opening after the last control iteration. Sometimes
the controller diverged or the cap was moved to a distractor object. Therefore the fi-
nal distance is set to 3 cm for final distances > 3 cm to reduce the effect of diverged

Adapting control policies from simulation to reality 9

runs on the average. Each bar is an average of 20 trials (lower is better). Figure 7
shows the success rate of the end-to-end controller (we define “success” to occur
when the cap final position is within 1cm of the position of the bottle top). Each bar
is an average of 20 trials (higher is better). Note that for the unsupervised domain
adaptation baseline “sim+real (MMD)” we have only results for the “test loss”, not
for “final distance” and “success rates”. However, comparing the three bar plots for
the other domain transfer methods shows that the test loss roughly reflects the per-
formance on the robot.
The baseline “sim only” consists of 100k simulated images as described in Sec-
tion 3. The dataset used for domain transfer method “sim+real (MMD)” contains
100k labeled simulated images with 726 unlabeled real images with clutter per bot-
tle in the category (e.g. 2x726 for category 2 “soda” or 3x726 for category 3 “jugs”).
We use real images with clutter, since this matches closely the distribution of the tar-
get domain (we test with clutter). However, our approach is able to use real images
without clutter with better performance. The datasets for “sim+real (without pair-
wise)” and “sim+real (with pairwise)” contain labeled real images without clutter
paired with the corresponding simulated images in the same robot state. The real
images in the dataset are repeated to obtain 100k real images to balance the 100k
simulated images. To prevent overfitting to the real images, the weight for the task
loss of the real images is set to 0.1 (the weight for for the task loss of the simulated
images remains 1.0). The weight for the pairwise loss for “sim+real (with pairwise)”
is set to 0.1 and the weight for MMD loss for MMD baseline is set to 0.05 (weight
loss parameters were determined by hyperparameter tuning).

In Figure 5, we show the experimental results of the unsupervised domain adap-
tation method. The MMD-based method works better than “real image with clutter,”
despite the fact that it does not use any supervision for the real images. However, it
performs worse than “sim+real without pairwise loss”. After some empirical analy-
sis, we think it is mainly caused by three reasons. Firstly, the real data is unlabeled
in the unsupervised domain adaptation setting. Secondly, the real images used for
training and testing are also biased by themselves. Thirdly, the domain adaptation
loss is not directly applied to align the action information while the test loss is highly
relevant to that.

We experimented with clutter and no clutter combinations in the sim-real image
pairs. Figure 8 shows the test loss when trained on different combinations of having
clutter in sim or real part of the image pairs. For this experiment we trained on
bottles from category 5 (this category contains cornstarch and vitamin bottle) and
tested on all available bottles. There are two averages across test bottles: “AVG” is
the average over all bottles (including bottles trained on) and “AVG (holdout only)”
excluding the training bottles. Note that the “sim-real” datasets also contains 100k
sim images with clutter. The main insight of this experiment is that using sim image
with clutter and real image without clutter gives almost as good of a performance as
real image with clutter in the case of applying pairwise loss. Also, the gap between
“with” and “without” pairwise is the largest. Note how the nets containing real
images with clutter overfits to “corn starch” and “vitamin” if no pairwise loss is

10 Ulrich Viereck, Xingchao Peng, Kate Saenko, and Robert Platt

Fig. 8 Effect of different clutter/no clutter combinations in the pairwise sim-real image dataset.
This plot also shows the effect adding pairwise loss. Without pairwise loss the network tends to
overfit to the real images. In particular the network trained on “real only with clutter” and “sim
clutter - real clutter (no pairwise)” overfit to the two training bottles “corn starch” and ”vitamin
bottle” in the category 5 bottles.

applied. This shows that the pairwise loss has a regularization effect and prevents
overfitting to the training data.

5 Discussion and Conclusion

The group of bars at the far right of Figures 5-7 labeled “AVG” summarize the
comparison. Each bar (i.e. each domain transfer method) is an average of all ex-
periments for that domain transfer type. This illustrates a few key results. First, the
domain transfer method using our proposed task-pairwise loss function does best
overall (lowest loss, lowest average final distance, highest task success rate). Sec-
ond, the method using only real images does worst, probably because we do not
train on enough different objects to facilitate generalization to novel objects. Third,
training using only simulated images does quite well (54% success rate): not quite
as well as we can do using our proposed method (70% success rate), but not nearly
as badly as training on only real data.

The unsupervised domain adaptation approach performs worse than trained on
“sim only” (see Figure 5). The reason might be that simulated and real depth images
look very similar (they are both depth images with similar distributions of gray scale
values) and the domain adaptation does not have much of an effect.

Overall, we conclude that training visuomotor policies for category-level tasks
in simulation is a promising approach, and that by collecting a small amount of
labeled real data in simplified scenarios and using the pairwise loss, we can improve
performance on real systems.

Adapting control policies from simulation to reality 11

References

1. Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal
Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simu-
lation and domain adaptation to improve efficiency of deep robotic grasping. arXiv preprint
arXiv:1709.07857, 2017.

2. R. Diankov. Openrave. http://openrave.org.
3. Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander

Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773,
2012.

4. Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano
Pontil, Kenji Fukumizu, and Bharath K Sriperumbudur. Optimal kernel choice for large-scale
two-sample tests. In Advances in neural information processing systems, pages 1205–1213,
2012.

5. Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye coor-
dination for robotic grasping with deep learning and large-scale data collection. arXiv preprint
arXiv:1603.02199, 2016.

6. Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable fea-
tures with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

7. Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009.

8. Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on, pages 23–30. IEEE, 2017.

9. Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate
Saenko, and Trevor Darrell. Adapting deep visuomotor representations with weak pairwise
constraints. arXiv preprint arXiv:1511.07111, 2015.

10. Ulrich Viereck, Andreas Pas, Kate Saenko, and Robert Platt. Learning a visuomotor con-
troller for real world robotic grasping using simulated depth images. In Conference on Robot
Learning (CoRL), 2017.

