
Constraint Generation Algorithm for the
Minimum Connectivity Inference Problem

Édouard Bonnet1, Diana-Elena Fălămaş1,2, and Rémi Watrigant1

1 Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP, F-69342,
LYON Cedex 07, France

2 Technical University of Cluj-Napoca, Romania.

{edouard.bonnet, remi.watrigant}@ens-lyon.fr, falamasd@yahoo.com

Abstract. Given a hypergraph H, the Minimum Connectivity In-
ference problem asks for a graph on the same vertex set as H with
the minimum number of edges such that the subgraph induced by every
hyperedge of H is connected. This problem has received a lot of atten-
tion these recent years, both from a theoretical and practical perspec-
tive, leading to several implemented approximation, greedy and heuris-
tic algorithms. Concerning exact algorithms, only Mixed Integer Linear
Programming (MILP) formulations have been experimented, all repre-
senting connectivity constraints by the means of graph flows. In this
work, we investigate the efficiency of a constraint generation algorithm,
where we iteratively add cut constraints to a simple ILP until a feasible
(and optimal) solution is found. It turns out that our method is faster
than the previous best flow-based MILP algorithm on random generated
instances, which suggests that a constraint generation approach might
be also useful for other optimization problems dealing with connectivity
constraints. At last, we present the results of an enumeration algorithm
for the problem.

Keywords: Hypergraph · Constraint generation algorithm · Connectiv-
ity problem.

1 Introduction and related work

We study the problem where one wants to infer a binary relation over a set of
items V (that is, a graph), where the input consists of some subsets of those
items which are known to be connected in the solution we are looking for. In
other words, the input can be represented by a hypergraph H = (V, E), and we
are looking for an underlying undirected graph G = (V,E) such that for every
hyperedge S ∈ E , the subgraph induced by S, denoted by G[S], is connected
(such a graph G will be called a feasible solution in the sequel). Observe that
it is easy to construct trivial feasible solutions to this problem: consider for in-
stance the graph K(H) having vertex set V and an edge uv iff u and v belong
to a same hyperedge. Since these solutions are unlikely to be of great interest in

ar
X

iv
:1

90
8.

09
58

6v
1

 [
cs

.D
S]

 2
6

A
ug

 2
01

9

2 É. Bonnet, D. Fălămaş, and R. Watrigant

practice, it makes sense to add an optimization criteria. In this paper, we focus
on minimizing the number of edges of the solution. More formally, we study the
following problem:

Minimum Connectivity Inference (MCI)
Input: a hypergraph H = (V, E)
Output: a graph G = (V,E) such that G[S] is connected ∀S ∈ E
Goal: minimize |E(G)|

This optimization problem is NP-hard [11], and was first introduced for the
design of vacuum systems [12]. It has then be studied independently in several
different contexts, mainly dealing with network design: computer networks [13],
social networks [3] (more precisely modeling the publish/subscribe communica-
tion paradigm [7,15,19]), but also other fields, such as auction systems [8] and
structural biology [1,2]. Finally, we can mention the issue of hypergraph drawing,
where, in addition to the connectivity constraints, one usually looks for graphs
with additional properties (e.g. planarity, having a tree-like structure... etc.)
[5,16,17,18]. This plethora of applications explains why this problem is known
under different names, such as Subset Interconnected Design, Minimum
Topic Overlay or Interconnection Design. For a comprehensive survey
of the theoretical work done on this problem, see [6] and the references therein.

Concerning the implementation of algorithms, previous works mainly focused
on approximation, greedy and other heuristic techniques [19]. To the best of our
knowledge, the first exact algorithm was designed by Agarwal et al. [1,2] in the
context of structural biology, where the sought graph represents the contact re-
lations between proteins of a macro-molecule, which has to be inferred from a
hypergraph constructed by chemical experiments and mass spectrometry. In this
work, the authors define a Mixed Integer Linear Programming (MILP) formu-
lation of the problem, representing the connectivity constraints by flows. They
also provide an enumeration method using their algorithm as a black box, by
iteratively adding constraints to the MILP in order to forbid already found solu-
tions. Both their optimization and enumeration algorithms were tested on some
real-life (from a structural biology perspective) instances for which the contact
graph was already known.

This MILP model was then improved recently by Dar et al. [10], who mainly
reduced the number of variables and constraints of the formulation, but still
representing the connectivity constraints by the means of flows. In addition,
they also presented and implemented a number of (already known and new)
reduction rules. This new MILP formulation together with the reduction rules
were then compared to the algorithm of Agarwal et al. on randomly-generated
instances. For every kind of tested hypergraphs (different number and sizes of
hyperedges), they observed a drastic improvement of both the execution time
and the maximum size of instances that could be solved.

In this paper we initiate a different approach for this problem, by defining a
simple constraint generation algorithm relying on a cut-based ILP. This method
can be seen as an application of Benders’ decomposition [4], where one wants

Constraint Generation Algorithm for the Minimum Connectivity Problem 3

to solve a (generally large) ILP called master problem by decomposing it into a
smaller (and easier to solve) one, adding new constraints from the master prob-
lem when the obtained solution is infeasible (this approach is sometimes known
as row generation, because new constraints are added throughout the resolu-
tion). We first present different approaches for the addition of new constraints
and compare their efficiency on random instances. We then evaluate the perfor-
mance of our method by comparing it to the MILP formulation of Dar et al. on
randomly generated instances (using the same random generator).

Finally, we present an algorithm for enumerating all optimal solutions of an
instance, which we compare to the approach developed by Agarwal et al..

Organization of the paper. In the next section, we introduce our constraint gen-
eration algorithm. In Section 3, we recall the random generator of Dar et al. and
present the results of the comparison between our constraint generation algo-
rithm and the flow-based MILP formulation. Finally, Section 4 is devoted to our
enumeration algorithm.

2 Constraint generation algorithm for MCI

2.1 Presentation

Rather than defining a single (M)ILP model whose optimal solutions coincide
with optimal solutions of the MCI problem, our approach is a constraint gener-
ation algorithm which starts with a simple ILP whose optimal solutions do not
necessarily correspond to feasible solutions for MCI. Then, some constraints are
added to the model which is solved again. This process is repeated until we reach
a feasible solution.

Let us define more formally our approach. In the sequel, H = (V, E) will
always denote our input hypergraph, and n and m will always denote the number
of vertices and hyperedges of H, respectively. Recall that K(H) denotes the
graph with vertex set V having an edge uv iff u and v belong to a same hyperedge.
Let us first define our starting ILP model. It has one binary variable xe for every
possible edge e of K(H), which takes value 1 iff the corresponding edge is in the
solution. In the following, we will thus make no distinction between solutions of
our ILP and graphs with vertex set V .

The constraints that will be added are defined by cuts (X1, X2, . . . , Xr),
r ≥ 2, where Xi ⊆ V , Xi 6= ∅ and Xi ∩ Xj = ∅ for every i, j ∈ {1, . . . , r},
i 6= j. Given a cut C := (X1, . . . , Xr), we define its corresponding set of edges
E(C) := {xy ∈ E(G), x ∈ Xi, y ∈ Xj , i 6= j}. Given a set of cuts C, let M(C) be
the following ILP:

4 É. Bonnet, D. Fălămaş, and R. Watrigant

Minimize
∑

e∈K(H)

xe

subject to: ∑
u,v∈S

xuv ≥ |S| − 1 ∀S ∈ E (1)∑
e∈E(C)

xe ≥ r − 1 ∀C := (X1, . . . , Xr) ∈ C (2)

xe ∈ {0, 1} ∀e ∈ K(H)

Constraints (1) forces the solution to contain at least |S| − 1 edges within
every hyperedge. Although this constraints is not sufficient to guarantee the
connectivity in every hyperedge (for instance, two disjoint cycles also satisfy
this constraint), its purpose is mainly to speed-up the resolution.

The purpose of constraints (2) is to forbid X1, . . ., Xr to be connected com-
ponents in the solution: it forces the quotient graph3 w.r.t. X1, . . ., Xr to contain
at least r − 1 edges. Notice that if r = 2, then it forces the solution to have an
edge between the two parts X1 and X2.

For a set S ⊆ V , define BS := {(X,S\X) : X ⊆ S,X /∈ {∅, S}} the set of cuts
constructed from all non-trivial4 bipartitions of S, and PS = {(X1, . . . , Xr) : r ≥
2, Xi ⊆ S, Xi 6= ∅, ∪ri=1Xi = S and Xi ∩Xj = ∅ for all i, j ∈ {1, . . . , r}, i 6= j}
the set of cuts constructed from all non-trivial partitions of S. Moreover let
BH :=

⋃
S∈E BS and PH :=

⋃
S∈E PS . We have the following:

Proposition 1. Optimal solutions ofM(PH) are in one-to-one correspondence
with optimal solutions ofM(BH) which are themselves in one-to-one correspon-
dence with optimal solutions of the MCI instance.

Proof. We have BH ⊆ PH , hence a feasible solution of M(PH) is also a feasible
solution of M(BH). A feasible solution of M(BH) is also a feasible solution of
MCI, since otherwise Constraint (2) would not be satisfied for some bipartition
of some hyperedge. Finally a feasible solution of MCI is a feasible solution of
M(PH), otherwise a hyperedge would not induce a connected subgraph. ut

By the previous proposition, it would be sufficient to solveM(BH) orM(PH).
However, we have |PH | =

∑
S∈E 2|S| − 1 and |BH | =

∑
S∈E 2|S|−1 − 1, which

makes these naive ILPs inefficient from a practical point of view. Fortunately, it
turns out that for many instances in practice, only a small number of cuts among
BH (resp. PH) is actually needed in order to ensure connectivity in every hy-
peredge. This idea is the basis of our constraint generation algorithm described
below.

3 The quotient graph w.r.t. X1, . . ., Xr has r vertices v1, . . ., vr, and an edge vivj
whenever there is an edge between a vertex of Xi and a vertex of Xj , i 6= j.

4 A non-trivial partition of a set V is a partition where each set is different from ∅
and V .

Constraint Generation Algorithm for the Minimum Connectivity Problem 5

Algorithm 1: constraint generation algorithm for MCI

Input: a hypergraph H = (V, E)
Output: a solution G = (V,E)

1 C ← Cinit(H)
2 G← solve(M(C))
3 while G is not feasible do
4 C ← C ∪ newCuts(G)
5 G← solve(M(C))
6 end

Our strategy is specified by a set of initial cuts of the input hypergraph
Cinit(H), and a routine newCuts(G) which takes a non-feasible solution G as
input, and outputs a set of cuts. If the newCuts(.) routine always returns cuts
from BH (resp. PH) that were not considered before, then the algorithm clearly
outputs a feasible optimal solution for the problem, since it only stops when
a feasible solution is found and, in the worst case, it ends by solving M(BH)
(resp.M(PH)). This proves that Algorithm 1 always terminates and returns an
optimal solution for MCI, provided that the newCuts(.) routine satisfies the
property described above. The choices of the initial set of cuts and this routine
are described in the next sub-section.

2.2 Choice of cuts

The choice of cuts is a crucial feature of our algorithm. The main challenge is
to find the policies that will lead to a right balance of the number of added
constraints: if too few constraints are added in each iteration, then the number
of these iterations will increase, which will then result in a lack of efficiency.
On the opposite, if too many constraints are added at the beginning and/or
in each iteration, then the size of the ILP will increase too quickly, which will
slow down the solver, and then result in a lack of efficiency once again. Here we
present a set of initial set of cuts, and three possible newCuts(.) routines. We
then conducted an empirical evaluation of these strategies (using the initial set
of cuts or not, followed by one of the three newCuts(.) routine, thus defining six
possible strategies).

Initial set of cuts. For every hyperedge S ∈ E , and every vertex v ∈ S, the idea
is to add the cut ({v}, S \ {v}). This set of cuts forbids solutions with isolated
vertices in every hyperedge. One could also consider cuts (X,X \S) formed from
every subset X ⊆ S of a fixed size q. However, for q = 2 already, we noticed a
drop of efficiency, mainly caused by the large number of constraints it creates.
Hence, we shall initialize Cinit with the cuts formed by singletons only. In the
sequel, this initial set of cuts will sometimes be called singleton cuts.

6 É. Bonnet, D. Fălămaş, and R. Watrigant

The newCuts(.) routine. Given a non-feasible solution G of MCI, recall that we
shall add, for every hyperedge S such that G[S] is disconnected, a set of cuts. Let
S be such a hyperedge. Notice that the objective is not to guarantee connectivity
in the very next iteration of the algorithm, but to constrain the model more and
more. Let S1, . . ., Sp be the connected components of G[S], with p ≥ 2. We
considered three natural ideas for the set of new cuts corresponding to S in this
situation:

– Routine 1: add only one cut (A,B) corresponding to a balanced bipartition
of the connected components, that is, A ∪ B = S, A ∩ B = ∅ and Si ⊆ A
or Si ⊆ B for every i ∈ {1, . . . , p}, and the absolute value of |A| − |B| is
as minimum as possible. Since the problem of finding a balanced bipartition
of a given set of numbers is an NP-hard problem, the computation of the
bipartition was done using a polynomial greedy algorithm which considers
connected components in decreasing order w.r.t. their sizes, and iteratively
adds each of them to A (resp. B) whenever |A| < |B| (resp. |A| ≥ |B|). Notice
that this algorithm provides a 7

6 -approximation of an optimal bipartition,
and runs in O(p log p) time [14].

– Routine 2: add the cut (Si,∪j 6=iSj), for every i ∈ {1, . . . , p}. This idea
forbids Si to be disconnected from the rest of S in the next iteration.

– Routine 3: add the cut (S1, . . . , Sp). Here, we simply forbid G[S] to have
the exact same connected components in the next round.

Observe that the first two strategies return cuts from the set BH defined previ-
ously, while the third one returns a cut which belongs to PH . In all three cases,
the routine returns cuts which were not in the model, hence guaranteeing the
optimality and termination of our algorithms, as seen previously.

Combining the above choices, it gives six different strategies:

– Strategy 1: initial set of cuts: none ; newCuts(.): Routine 1
– Strategy 2: initial set of cuts: none ; newCuts(.): Routine 2
– Strategy 3: initial set of cuts: none ; newCuts(.): Routine 3
– Strategy 4: initial set of cuts: singleton cuts ; newCuts(.): Routine 1
– Strategy 5: initial set of cuts: singleton cuts ; newCuts(.): Routine 2
– Strategy 6: initial set of cuts: singleton cuts ; newCuts(.): Routine 3

After an empirical evaluation of the above strategies for different kind of in-
stances, we observed a similar behaviour for all of them, with a high deviation
for seemingly similar instances. Nevertheless, we could observe that on average,
strategies 4, 5, and 6 were more efficient than strategies 1, 2 and 3, especially for
instances with a high number of vertices, which suggests that using a non-empty
set of initial set of cuts should always be better. The closeness of the results for
the three routines can be explained by the fact that in practice (in our random
instances, all having less than 25 vertices), the number of connected components
of every hyperedge of non-feasible solution is usually small (frequently 2 or 3,
and often smaller than 5), which leads to similar ILP models to be solved (for in-
stance, when there are only two connected components, all three routines output
exactly the same set of cuts).

Constraint Generation Algorithm for the Minimum Connectivity Problem 7

Our first empirical results suggest that a more fine-grained comparison should
be performed in order to better understand which hypergraph parameters influ-
ence the efficiency of our different strategies. This approach could then be used
in a more general algorithm which would first analyze the instance to solve,
and then choose the right strategy to use. Another option would be to run all
strategies in parallel in order to obtain the least running time for every instance.

In the sequel, we decided to effectively use the singleton cuts as initial set of
cuts, and to use Routine 1 as newCuts(.) (that is, it corresponds to strategy 4
described above).

3 Experimental evaluation

3.1 Generation of instances

Our random generator of instances follows the same rules as in the experiment
conducted by Dar et al. [10]. A given scenario depends on the following features:

– Number of vertices n of the hypergraph.
– Density of the hypergraph d = m

n . As in [10], we used the following
values: d ∈ {1, 3, 5}.

– Hyperedge size bounds and distributions. For this parameter, we used
the four types defined by [10] plus a new fifth type. For the first four, a size
is chosen uniformly at random for each hyperedge among prescribed upper
and lower bounds:
• Type 1: sizes of hyperedges between 2 and n
• Type 2: sizes of hyperedges between 2 and dn/2e
• Type 3: sizes of hyperedges between dn/4e and n
• Type 4: sizes of hyperedges between dn/4e and dn/2e.

Then, for each hyperedge, vertices are chosen uniformly at random until the
desired size is reached. For the fifth type, hyperedges are chosen uniformly at
random among all possible hyperedges. To do so, for each hyperedge, each
vertex is added with probability 1/2 until the desired number of distinct
hyperedges is reached. Hence, the sizes of hyperedges follow a uniform dis-
tribution for the first four types, and a gaussian distribution (centered at n

2)
for the fifth one.

In the following, a scenario corresponds to a triple (n, d, Type). In all exper-
iments conducted in this paper, 50 instances were generated for each scenario.
Moreover, a time limit of 900 seconds (15 minutes) was set for each instance.

3.2 Comparison with the flow-based MILP formulation

In this sub-section, we present the results of the comparison between our con-
straint generation algorithm and the best state-of-the-art exact algorithm for
MCI, which is the improved flow-based MILP model of Dar et al. [10]. As ex-
plained in the introduction, this algorithm is itself an improvement of a previous

8 É. Bonnet, D. Fălămaş, and R. Watrigant

algorithm of Agarwal et al. [1]. Although both algorithms rely on a flow-based
MILP formulation of the problem, the improvement of Dar et al. can be sum-
marized as follows:

– The MILP formulation of Dar et al. contains less variables and constraints,
mainly because of a factoring of several linearly-dependent constraints in
the previous formulation. They also added some new constraints in order to
speed-up the resolution.

– The algorithm of Dar et al. also contains several pre-processing rules whose
purpose is to reduce the number of vertices and hyperedges of the input
instance, and thus reduce the size of the MILP formulation. These reduction
rules rely on some observations of the problem, dealing with parts of the
instances where the structure of an optimal solution can be inferred in poly-
nomial time (e.g. when a set of vertices belong to a same set of hyperedges
of a large size). Notice that Dar et al. conducted an experimental evaluation
of their reduction rules in [9].

For the sake of completeness, we provide the MILP formlulation of Dar et
al.. To this end, let us first introduce some notions and definitions. For every
hyperedge S ∈ E they choose an arbitrary vertex rS ∈ S to be the source of
the flow which will ensures connectivity. Hence, they define a complete digraph
A(S) with vertex set S and, in addition to a variable xe for every edge of K(H),
their model has also a variable fS

a for every arc a of A(S). For a vertex v ∈ S,
A−S (v) (resp. A+

S (v)) denotes the set of arcs of A(S) entering v (resp. leaving v).
The model is the following:

Minimize
∑

e∈K(H)

xe

subject to: ∑
u,v∈S

xuv ≥ |S| − 1 ∀S ∈ E∑
a∈A−

S
(v)

fS
a −

∑
a∈A+

S
(v)

fS
a = −1 ∀S ∈ E , ∀v ∈ S \ rS

fS
uv + fS

vu ≤ (|S| − 1)xe ∀S ∈ E , ∀u, v ∈ S
fS
a ≥ 0 ∀S ∈ E , ∀a ∈ A(S)
xe ∈ {0, 1} ∀e ∈ K(H)

Since our goal was mainly to compare the performance of our constraint gen-
eration algorithm to a simple (M)ILP formulation, the reduction rules of Dar et
al. were not used for both algorithms. In the sequel, the algorithm of Dar et al.
will be denoted by Flow-MILP, and our constraint generation algorithm by
CGA.

All experiments were conducted on a computer equipped with an Intel R©
Xeon R© E5620 processor (64 bits) at 2.4GHz, 24GB of RAM and a Linux system
(Ubuntu version 18.04.1 LTS). The implementation of our constraint generation
algorithm (Strategy 4 described above) was written and run in SageMath version

Constraint Generation Algorithm for the Minimum Connectivity Problem 9

8.2 (release date 05/05/2018). The algorithm of Dar et al. was written5 and run
in MATLAB R© Released R2016b. The MILP solver used in both algorithms was
CPLEX R© version 12.8 from IBM R©. All algorithms (including all MILP reso-
lutions) were conducted sequentially, i.e. not exploiting multi-threading. Notice
that the measured time of the algorithm of Dar et al. only consists in the reso-
lution of the MILP model (the purpose of the MATLAB R© code is thus only to
construct the MILP model from the instance), hence the difference of program-
ming languages does not matter for the comparison.

For each scenario (n, d, Type), a set of 50 instances were generated and given
to both Flow-MILP and CGA. As said previously, for each instance, a time
limit of 900 seconds was set. Tables 1, 2 and 3 represent the results of the
comparison for densities 1, 3 and 5, respectively, where the running time is
the average running time of all instances solved within the time limit, and the
number in brackets indicates the number of instances (out of 50) effectively
solved within this limit in the case this number was different from 50. The
tables also show the average number of constraints in the MILP formulation
of both algorithms: for Flow-MILP it corresponds directly to the number of
constraints of the MILP model, while for CGA it corresponds to the number
of constraints it had to add in order to be able to solve the instance (hence, it
corresponds to the number of constraints in the last ILP solved).

As we can see in the results, our approach has a much lower average running
time compared to the previous algorithm in every scenario. Indeed, on average
(for all instances of all scenarios) CGA has a running time more than 13 times
smaller than Flow-MILP. As we could expect, the newly introduced type 5
of instances is the most difficult for both algorithms, certainly because these
instances contain much less small hyperedges than the others. This also explains
why type 2 instances are often the easiest to solve for both algorithms. These
results also highlights the fact that our algorithm is able to solve larger instances
than previously. When considering types 1, 2, 3, and 4 only:

– For m = n and n = 26 for instance, our algorithm is able to solve 100% of
instances within the time limit, while Flow-MILP can only solve less than
85% of them.

– For m = 3n, n = 20, CGA is able to solve 90% of instances, while Flow-
MILP can only solve 66%.

– For m = 5n and n = 18, CGA is able to solve 98% of instances while
Flow-MILP can only solve 82% of them.

Observe also that our algorithm generate much smaller MILP models. In-
deed, firstly the number of variables is always smaller, since our models do not
contain any flow variables. Secondly, as we can observe in the results, the num-
ber of added constraints is roughly 6 times smaller than in the flow-based MILP
model. Despite the fact that for each instance our algorithm needs to call the

5 We used the implementation of [10] provided by their authors.

10 É. Bonnet, D. Fălămaş, and R. Watrigant

n Type
Flow-MILP

(sec)
Flow-MILP

(con)
CGA (sec) CGA (con)

14 1 0.40 598.56 0.05 130.54
2 0.10 195.26 0.02 78.42
3 0.40 636.28 0.05 135.02
4 0.12 226.58 0.03 85.70
5 0.31 428.56 0.04 115.12

16 1 0.84 830.22 0.07 162.08
2 0.16 277.54 0.04 99.18
3 1.05 958.52 0.08 178.28
4 0.25 358.30 0.06 115.60
5 1.75 618.86 0.18 152.50

18 1 2.58 1163.16 0.11 201.56
2 0.27 372.92 0.07 123.00
3 8.51 1263.40 0.19 219.42
4 0.40 466.40 0.09 139.08
5 3.72 826.74 0.37 187.18

20 1 24.17 1569.76 0.34 253.22
2 0.52 471.60 0.11 145.18
3 35.33 1799.16 0.58 282.62
4 1.88 672.04 0.54 182.14
5 35.64 1158.72 2.97 250.80

22 1 60.53 2023.32 0.85 307.94
2 1.05 630.04 0.27 177.80
3 107.17 [49] 2386.94 1.08 342.64
4 6.31 838.70 1.14 216.18
5 137.17 [47] 1504.98 12.02 315.64

24 1 119.20 [49] 2566.84 2.15 365.82
2 3.76 807.26 0.54 211.76
3 314.43 [39] 3147.10 8.58 443.44
4 42.49 [49] 1140.20 4.29 272.38
5 344.12 [28] 1929.75 122.41 [49] 404.24

26 1 194.88 [38] 3342.79 28.25 448.26
2 19.83 1019.42 4.28 253.16
3 365.14 [33] 3733.33 8.39 498.22
4 101.67 [48] 1338.85 16.92 318.62
5 606.45 [8] 2382.62 285.70 [31] 478.58

Table 1. Comparison of running times and number of constraints between Flow-
MILP and CGA for density 1. Columns labeled with (sec) (resp. (con) represent the
average running time (resp. number of constraints).

MILP solver several times, calling it on much smaller MILP models offers a bet-
ter overall running time.

We also generated instances with hyperedges sizes bounded by a (small)
constant, in order to see how far we could increase the number of vertices for
both algorithms. More precisely, we generated instances with hyperedges of size

Constraint Generation Algorithm for the Minimum Connectivity Problem 11

n Type
Flow-
MILP
(sec)

Flow-
MILP
(con)

CGA (sec) CGA (con)

12 1 0.90 1056.10 0.08 275.24
2 0.19 399.16 0.05 181.20
3 0.78 1153.72 0.08 291.50
4 0.30 469.44 0.06 198.74
5 0.99 814.18 0.13 253.84

14 1 2.40 1645.76 0.15 366.24
2 0.38 586.10 0.08 233.46
3 2.75 1707.58 0.19 377.32
4 0.59 665.06 0.14 251.90
5 6.14 1254.08 0.69 340.64

16 1 9.67 2424.56 0.42 469.52
2 0.97 827.48 0.21 293.36
3 31.98 2773.78 1.38 518.96
4 8.25 1056.66 1.60 340.16
5 155.75 [49] 1857.67 27.56 454.78

18 1 35.95 3269.58 1.72 578.04
2 3.55 1107.86 0.66 356.14
3 187.60 [49] 3773.76 15.92 645.78
4 69.12 1411.38 12.30 417.76
5 393.61 [11] 2458.09 241.37 [33] 566.21

20 1 178.20 [44] 4413.09 11.05 712.24
2 21.53 1454.96 4.73 432.20
3 418.32 [22] 5395.00 115.07 [48] 829.40
4 367.51 [16] 1943.69 274.18 [33] 532.66
5 -1.00 [0] 0.00 888.23 [1] 685.00

22 1 330.37 [29] 5896.55 76.89 872.12
2 105.96 [49] 1901.41 23.52 [49] 519.82
3 544.25 [2] 6935.50 210.25 [35] 993.80
4 -1.00 [0] 0.00 689.20 [8] 623.13
5 -1.00 [0] 0.00 -1.00 [0] 0.00

Table 2. Comparison of running times and number of constraints between Flow-
MILP and CGA for density 3. Columns labeled with (sec) (resp. (con)) represent the
average running time (resp. number of constraints).

7, and density d ∈ {1, 3} (for density 5, the maximum number of vertices for
which our algorithm was able to solve 100% of the instances was only 300).

The differences of running time is even more significant in this experiment.
The algorithm of Dar et al. fails to solve 100% of the instances within the time
limit for 200 vertices already (density 3). Moreover, for density 1, there is a huge
lack of efficiency between 750 and 1000 vertices for the flow-based MILP algo-
rithm, going from 100% of instances solved to 8%. Overall, we can observe that
our approach allows to solve instances or a much larger size than the previous
algorithm.

12 É. Bonnet, D. Fălămaş, and R. Watrigant

n Type
Flow-
MILP
(sec)

Flow-
MILP
(con)

CGA (sec) CGA (con)

10 1 0.44 1009.94 0.06 322.38
2 0.19 432.96 0.05 226.90
3 0.47 1023.98 0.07 324.68
4 0.19 438.26 0.05 228.50
5 0.53 816.82 0.07 301.58

12 1 1.28 1717.92 0.14 452.32
2 0.36 674.92 0.07 303.98
3 2.37 1862.66 0.19 479.42
4 0.76 786.34 0.13 331.62
5 2.63 1346.06 0.27 420.58

14 1 6.54 2684.80 0.28 601.18
2 0.82 989.18 0.17 390.82
3 10.00 2809.78 0.42 624.30
4 1.79 1112.46 0.31 419.54
5 57.82 2108.38 5.90 568.06

16 1 27.61 3892.42 0.95 765.86
2 2.35 1375.52 0.45 485.30
3 146.77 [49] 4414.90 6.91 843.04
4 73.50 [46] 1757.11 42.70 567.12
5 546.07 [20] 2976.35 176.13 [38] 728.76

18 1 91.41 [48] 5527.35 3.31 963.82
2 15.35 1884.84 1.61 597.76
3 381.68 [30] 6082.20 55.23 1050.14
4 357.08 [36] 2313.11 104.60 [46] 684.29
5 440.86 [1] 4244.00 283.08 [2] 911.00

20 1 178.73 [35] 7266.37 17.41 1169.50
2 65.76 2430.20 6.06 708.82
3 588.01 [1] 9003.00 347.20 [21] 1322.05
4 -1.00 [0] 0.00 -1.00 [0] 0.00
5 -1.00 [0] 0.00 -1.00 [0] 0.00

Table 3. Comparison of running times and number of constraints between Flow-
MILP and CGA for density 5. Columns labeled with (sec) (resp. (con)) represent the
average running time (resp. number of constraints).

4 Enumeration algorithm

In this section, we describe an approach to enumerate all optimal solutions of
an instance of MCI. When solving an optimization problem using an MILP
formulation in which the solution is represented by 0-1 variables, a natural way
to obtain an enumeration algorithm consists in adding new constraints in order
to forbid previously found solutions. More formally, if the objective of the MILP
is

Minimize

n∑
i=1

xi

Constraint Generation Algorithm for the Minimum Connectivity Problem 13

n d Flow-MILP (sec) Flow-MILP (con) CGA (sec) CGA (con)

30 1 0.31 407.04 0.12 169.58
30 3 5.14 1259.36 2.03 512.14

50 1 0.47 699.32 0.25 286.58
50 3 12.85 2066.28 2.89 856.66

100 1 1.33 1396.66 0.62 572.82
100 3 39.35 4176.84 4.85 1752.02

200 1 5.38 2809.72 0.79 1132.54
200 3 106.51 [46] 8269.80 4.76 3436.34

300 1 17.20 4209.62 1.40 1691.58
300 3 148.21 [33] 12415.18 8.04 5117.94

400 1 41.62 5596.66 1.61 2239.86
400 3 220.36 [37] 16584.57 23.73 7033.42

500 1 83.89 7002.62 2.29 2792.82
500 3 369.10 [46] 20739.85 94.24 8969.68

750 1 296.43 10521.40 15.07 4265.36
750 3 -1.00 [0] 0.00 266.82 13454.44

1000 1 627.295 [4] 14018.50 34.54 5645.48
1000 3 -1.00 [0] 0.00 666.70 [33] 17785.06

Table 4. Results for instances with hyperedges of size 7. Columns labeled with (sec)
(resp. (con)) represent the average running time (resp. number of constraints).

where each xi is a 0-1 variable, then one can forbid a given solution S ⊆
{1, . . . , n} represented by the indices of all variables set to 1 by adding the
following constraint:

∑
i∈S

xi < |S|

Hence, forbidding a set of solutions A can be done by adding |A| new constraints
to the model. This idea was used by Agarwal et al. [1] in order to obtain an al-
gorithm enumerating all optimal solutions of an instance of MCI. This strategy,
although being easy to implement, becomes much less efficient when the num-
ber of solutions of the instances increases, because the size of the MILP model
becomes too large for the solver. We propose a new method for the enumeration
of solutions, which, in a nutshell, consists in forbidding the solutions “chunk by
chunk”. To this end, we iteratively accumulate optimal solutions by exploring
the neighborhood of a solution found (the way we explore this neighborhood
will be explained later). Once this exploration is done, we forbid all optimal

14 É. Bonnet, D. Fălămaş, and R. Watrigant

solutions found at the same time. A pseudo-code of this approach is presented
in Algorithm 2.

Algorithm 2: Enumeration algorithm for MCI

Input: a hypergraph H = (V, E)
Output: A: the set of all optimal solutions of H

1 A ← ∅
2 c∗ ← cost of an optimal solution of H
3 while there exists a solution S of cost c∗ which does not belong to A do
4 N ← neighborhood of S
5 A ← A∪N
6 end
7 return A

Naturally, we use our constraint generation algorithm described previously
in order to find new optimal solutions. Notice that once we have found one
optimal solution of cost c∗, we shall add a new constraint to our ILP in order
to find new solutions of size exactly c∗ in the next rounds, which usually speeds
up the resolution. We now describe the way we explore the neighborhood of
a solution (which corresponds to Line 4 of Algorithm 2). This step is done by
forbidding an arbitrary edge e of the previously found solution, by simply adding
a new constraint to our ILP forcing the corresponding variable xe to 0. We thus
iteratively accumulate new optimal solutions until the solver returns that the
obtained ILP does not admit a solution of the desired cost, which means that
the exploration of the neighborhood is done. We then remove the newly added
constraints used in this routine for the next loop in Line 3 of Algorithm 2.

We evaluated the performance of our approach by comparing its running
time to the natural approach of forbidding each new optimal found in the ILP
described at the beginning of this section (still using our exact algorithm as a
black box for finding new solutions). To this end, we generated a set of 1000
random instances of type 1 with a density of m

n = 2, and n = 10. These settings
were chosen because they allow the random generation to produce instances of
various different structures. In particular, we observed a quite fair distribution
of the numbers of solutions, which seemed to be a meaningful parameter for
the comparison of the two approaches. Figure 7 presents the result of these
experiments. As we can see, our new method offers a great improvement when
the number of solutions is high, by reducing by more than 8 times the running
time in our generated instances. These results suggest that our algorithm has a
running time which is linear in the number of solutions in practice.

5 Conclusion

In this paper we presented and evaluated an exact algorithm for the Minimum
Connectivity Inference problem, based on a constraint generation strategy
in order to ensure connectivity. Our experiments, conducted on various randomly
generated instances, demonstrated that our method outperforms the best pre-

Constraint Generation Algorithm for the Minimum Connectivity Problem 15

Fig. 1. Comparison of running times between the naive enumeration algorithm and
our new approach, as a function of the number of solutions of the instances.

viously known exact algorithm for this problem, relying on a flow-based MILP
formulation. Since connectivity constraints appear very often in practical situa-
tions which are usually solved by the means of MILP, our results suggest that
a constraint generation strategy can sometimes be much more efficient. As a
further research, it would be interesting to apply this technique to other op-
timization problems in which connectivity plays an important role. It should
be noted that during the empirical evaluation of the different sub-routines for
our algorithm, we noticed high standard deviations in the running times. It
would be thus interesting to understand which hypergraph parameters influ-
ence the complexity of our strategies. Apart from providing useful information
about the problem and our method, this could be used in order to build a more
structured benchmark of instances, which could be of great help for the eval-
uation of future exact algorithms. Finally, our enumeration algorithms seems
to be a promising method which should be tested for other similar problems.

Acknowledgment. We would like to thank Muhammad Abid Dar, Andreas
Fischer, John Martinovic and Guntram Scheithauer for providing us the source
code of their algorithm [10].

16 É. Bonnet, D. Fălămaş, and R. Watrigant

References

1. Agarwal, D., Araújo, J.C.S., Caillouet, C., Cazals, F., Coudert, D., Pérennes, S.:
Connectivity inference in mass spectrometry based structure determination. In:
Proceedings of the 21st European Symposium on Algorithms (ESA 2013). pp.
289–300 (2013)

2. Agarwal, D., Araújo, J.C.S., Caillouet, C., Cazals, F., Coudert, D., Pérennes, S.:
Unveiling contacts within macro-molecular assemblies by solving minimum weight
connectivity inference problems. Molecular and Cellular Proteomics 14 (2015)

3. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In:
Algorithmic Learning Theory. pp. 104–118 (2010)

4. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4(1), 238–252 (Dec 1962)

5. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for
hypergraphs. Journal of Discrete Algorithms 14, 248 – 261 (2012), proceedings of
the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010)

6. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.:
Polynomial-time data reduction for the subset interconnection design problem.
SIAM J. Discrete Math. 29(1), 1–25 (2015)

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In: Proceedings of the 26th Annual ACM Symposium
on Principles of Distributed Computing (PODC ’07). pp. 109–118 (2007)

8. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with struc-
tured item graphs. In: Proceedings of the 19th National Conference on Artifical
Intelligence. pp. 212–218. AAAI’04 (2004)

9. Dar, M.A., Fischer, A., Martinovic, J., Scheithauer, G.: A computational study of
reduction techniques for the minimum connectivity inference problem. Proceedings
of Advances in Mathematical Methods and High Performance Computing, Springer
series Advances in Mechanics and Mathematics (2018)

10. Dar, M.A., Fischer, A., Martinovic, J., Scheithauer, G.: An improved flow-based
formulation and reduction principles for the minimum connectivity inference prob-
lem. Optimization 0(0), 1–21 (2018)

11. Du, D.Z., Miller, Z.: Matroids and subset interconnection design. SIAM Journal
on Discrete Mathematics 1(4), 416–424 (1988)

12. Du, D.Z., Miller, Z.: On complexity of subset interconnection designs. Journal of
Global Optimization 6(2), 193–205 (1995)

13. Fan, H., Hundt, C., Wu, Y.L., Ernst, J.: Algorithms and implementation for inter-
connection graph problem. In: Combinatorial Optimization and Applications. pp.
201–210 (2008)

14. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics 17(2), 416–429 (1969)

15. Hosoda, J., Hromkovič, J., Izumi, T., Ono, H., Steinová, M., Wada, K.: On the
approximability and hardness of minimum topic connected overlay and its special
instances. Theoretical Computer Science 429, 144 – 154 (2012)

16. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing
venn diagrams. Journal of Graph Theory 11(3), 309–325 (1987)

17. Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hyper-
graphs and low-concurrency euler diagrams. In: Algorithm Theory (SWAT 2014).
pp. 265–276 (2014)

Constraint Generation Algorithm for the Minimum Connectivity Problem 17

18. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree.
Mathematical Programming 98(1), 385–414 (Sep 2003)

19. Onus, M., Richa, A.W.: Minimum maximum degree publish-subscribe overlay net-
work design. In: IEEE INFOCOM 2009. pp. 882–890 (April 2009)

	Constraint Generation Algorithm for the Minimum Connectivity Inference Problem

