
An Experimental Study of Algorithms for
Geodesic Shortest Paths in the
Constant-Workspace Model?

Jonas Cleve[0000−0001−8480−1726] and Wolfgang Mulzer[0000−0002−1948−5840]

Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
[jonascleve, mulzer]@inf.fu-berlin.de

Abstract. We perform an experimental evaluation of algorithms for
finding geodesic shortest paths between two points inside a simple polygon
in the constant-workspace model. In this model, the input resides in
a read-only array that can be accessed at random. In addition, the
algorithm may use a constant number of words for reading and for
writing. The constant-workspace model has been studied extensively in
recent years, and algorithms for geodesic shortest paths have received
particular attention.
We have implemented three such algorithms in Python, and we compare
them to the classic algorithm by Lee and Preparata that uses linear time
and linear space. We also clarify a few implementation details that were
missing in the original description of the algorithms. Our experiments
show that all algorithms perform as advertised in the original works and
according to the theoretical guarantees. However, the constant factors in
the running times turn out to be rather large for the algorithms to be
fully useful in practice.

Keywords: simple polygon · geodesic shortest path · constant workspace
· experimental evaluation

1 Introduction

In recent years, the constant-workspace model has enjoyed growing popularity
in the computational geometry community [6]. Motivated by the increasing
deployment of small devices with limited memory capacities, the goal is to
develop simple and efficient algorithms for the situation where little workspace is
available. The model posits that the input resides in a read-only array that can
be accessed at random. In addition, the algorithm may use a constant number
of memory words for reading and for writing. The output must be written to
a write-only memory that cannot be accessed again for reading. Following the
initial work by Asano et al. from 2011 [2], numerous results have been published
for this model, leading to a solid theoretical foundation for dealing with geometric
problems when the working memory is scarce. The recent survey by Banyassady et

? Supported in part by DFG projects MU/3501-1 and RO/2338-6 and ERC StG 757609.

ar
X

iv
:1

90
4.

03
05

0v
1

 [
cs

.C
G

]
 5

 A
pr

 2
01

9

2 J. Cleve and W. Mulzer

al. [6] gives an overview of the problems that have been considered and of the
results that are available for them.

But how do these theoretical results measure up in practice, particularly in
view of the original motivation? To investigate this question, we have implemented
three different constant-workspace algorithms for computing geodesic shortest
paths in simple polygons. This is one of the first problems to be studied in the
constant-workspace model [2,3]. Given that the general shortest path problem is
unlikely to be amenable to constant-workspace algorithms (it is NL-complete [18]),
it may come as a surprise that a solution for the geodesic case exists at all. By
now, several algorithms are known, both for constant workspace as well as in
the time-space-trade-off regime, where the number of available cells of working
memory may range from constant to linear [1,12].

Due to the wide variety of approaches and the fundamental nature of the
problem, geodesic shortest paths are a natural candidate for a deeper experimen-
tal study. Our experiments show that all three constant-workspace algorithms
work well in practice and live up to their theoretical guarantees. However, the
large running times make them ill-suited for very large input sizes. During our
implementation, we also noticed some missing details in the original publications,
and we explain below how we have dealt with them.

As far as we know, our study constitutes the first large-scale comparative
evaluation of geometric algorithms in the constant-workspace model. A previous
implementation study, by Baffier et al. [5], focused on time-space trade-offs for
stack-based algorithms and was centered on different applications of a powerful
algorithmic technique. Given the practical motivation and wide applicability of
constant-workspace algorithms for geometric problems, we hope that our work
will lead to further experimental studies in this direction.

2 The Four Shortest-Path Algorithms

We provide a brief summary for each of the four algorithms in our implementation;
further details can be found in the original papers [3,2,14]. In each case, we use
P to denote a simple input polygon in the plane with n vertices. We consider P
to be a closed, connected subset of the plane. Given two points s, t ∈ P , our goal
is to compute a shortest path from s to t (with respect to the Euclidean length)
that lies completely inside P .

2.1 The Classic Algorithm by Lee and Preparata

This is the classic linear-space algorithm for the geodesic shortest path problem
that can be found in textbooks [14,11]. It works as follows: we triangulate P , and
we find the triangle that contains s and the triangle that contains t. Next, we
determine the unique path between these two triangles in the dual graph of the
triangulation. The path is unique since the dual graph of a triangulation of a
simple polygon is a tree [7]. We obtain a sequence e1, . . . , em of diagonals (incident
to pairs of consecutive triangles on the dual path) crossed by the geodesic shortest

Geodesic Shortest Path Algorithms with Constant Workspace 3

s t

e1 e3
e4

e5

e6

e7
e8

e2

Fig. 1: Examples of three funnels during the algorithm for finding a shortest path
from s to t. Each has cusp s and goes up to diagonals e2 (green, dashed), e6
(orange, dash dotted), and e8 (purple, dotted).

path between s and t, in that order. The algorithm walks along these diagonals,
while maintaining a funnel. The funnel consists of a cusp p, initialized to be s,
and two concave chains from p to the two endpoints of the current diagonal
ei. An example of these funnels can be found in Fig. 1. In each step i of the
algorithm, i = 1, . . . ,m− 1, we update the funnel for ei to the funnel for ei+1.
There are two cases: (i) if ei+1 remains visible from the cusp p, we update the
appropriate concave chain, using a variant of Graham’s scan; (ii) if ei+1 is no
longer visible from p, we proceed along the appropriate chain until we find the
cusp for the next funnel. We output the vertices encountered along the way as
part of the shortest path. Implemented in the right way, this procedure takes
linear time and space.1

2.2 Using Constrained Delaunay-Triangulations

The first constant-workspace-algorithm for geodesic shortest paths in simple
polygons was presented by Asano et al. [3] in 2011. It is called Delaunay , and it
constitutes a relatively direct adaptation of the method of Lee and Preparata to
the constant-workspace model.

In the constant-workspace model, we cannot explicitly compute and store a
triangulation of P . Instead, we use a uniquely defined implicit triangulation of
P , namely the constrained Delaunay triangulation of P [9]. In this variant of
the classic Delaunay triangulation, we prescribe the edges of P to be part of
the desired triangulation. Then, the additional triangulation edges cannot cross
the prescribed edges. Thus, unlike in the original Delaunay triangulation, the
circumcircle of a triangle may contain other vertices of P , as long as the line
segment from a triangle endpoint to the vertex crosses a prescribed polygon edge,
see Fig. 2 for an example.

1 If a triangulation of P is already available, the implementation is relatively straightfor-
ward. If not, a linear-time implementation of the triangulation procedure constitutes
a significant challenge [8]. Simpler methods are available, albeit at the cost of a
slightly increased running time of O(n logn) [7].

4 J. Cleve and W. Mulzer

(a) The Delaunay triangu-
lation of a point set.

(b) A polygon on the point
set which intersects the tri-
angulation.

(c) The circumcircle may
contain points not visible
from some triangle vertices.

Fig. 2: An example of a constrained Delaunay triangulation of a simple polygon.

The constrained Delaunay triangulation of P can be navigated efficiently
using constant workspace: given a diagonal or a polygon edge, we can find the
two incident triangles in O(n2) time [3]. Using an O(n) time constant-workspace-
algorithm for finding shortest paths in trees, also given by Asano et al. [3], we can
thus enumerate all triangles in the dual path between the constrained Delaunay
triangle that contains s and the constrained Delaunay triangle that contains t in
O(n3) time.

As in the algorithm by Lee and Preparata, we need to maintain the visibility
funnel while walking along the dual path of the constrained Delaunay trian-
gulation. Instead of the complete chains, we store only the two line segments
that define the current visibility cone (essentially the cusp together with the
first vertex of each chain). We recompute the two chains whenever it becomes
necessary. The total running time of the algorithm is O(n3). More details can be
found in the paper by Asano et al. [3].

2.3 Using Trapezoidal Decompositions

This algorithm was also proposed by Asano et al. [3], as a faster alternative to the
algorithm that uses constrained Delaunay triangulations. It is based on the same
principle as Delaunay , but it uses the trapezoidal decomposition of P instead of
the Delaunay triangulation [7]. See Fig. 3 for a depiction of the decomposition
and the symbolic perturbation method to avoid a general position assumption. In
the algorithm, we compute a trapezoidal decomposition of P , and we follow the
dual path between the trapezoid that contains s and the trapezoid that contains
t, while maintaining a funnel and outputting the new vertices of the geodesic
shortest path as they are discovered. Assuming general position, we can find all
incident trapezoids of the current trapezoid and determine how to continue on
the way to t in O(n) time (instead of O(n2) time in the case of the Delaunay
algorithm). Since there are still O(n) steps, the running time improves to O(n2).

Geodesic Shortest Path Algorithms with Constant Workspace 5

(a) The trapezoidal decomposition
is obtained by shooting rays up and
down at every vertex.

(b) Shifting all points to the right by
yε makes sure no two share the same
x-coordinate.

Fig. 3: The trapezoidal decomposition of a polygon. If the polygon is in general
position (right) each trapezoid has at most four neighbors which can all be found
in O(n) time.

2.4 The Makestep Algorithm

This algorithm was presented by Asano et al. [2]. It uses a direct approach to the
geodesic shortest path problem and unlike the two previous algorithms, it does
not try to mimic on the algorithm by Lee and Preparata. In the traditional model,
this approach would be deemed too inefficient, but in the constant-workspace
world, its simplicity turns out to be beneficial. The main idea is as follows: we
maintain a current vertex p of the geodesic shortest path, together with a visibility
cone, defined by two points q1 and q2 on the boundary of P . The segments pq1
and pq2 cut off a subpolygon P ′ ⊆ P . We maintain the invariant that the target t
lies in P ′. In each step, we gradually shrink P ′ by advancing q1 and q2, sometimes
also relocating p and outputting a new vertex of the geodesic shortest path. These
steps are illustrated in Fig. 4. It is possible to realize the shrinking steps in such
a way that there are only O(n) of them. Each shrinking step takes O(n) time, so
the total running time of the MakeStep algorithm is O(n2).

3 Our Implementation

We have implemented the four algorithms from Section 2 in Python [15]. For
graphical output and for plots, we use the matplotlib library [13]. Even though
there are some packages for Python that provide geometric objects such as line
segments, circles, etc., none of them seemed suitable for our needs. Thus, we
decided to implement all geometric primitives on our own. The source code of
the implementation is available online in a Git-repository.2

In order to apply the algorithm Lee-Preparata, we must be able to triangulate
the simple input polygon P efficiently. Since implementing an efficient polygon

2 https://github.com/jonasc/constant-workspace-algos

https://github.com/jonasc/constant-workspace-algos

6 J. Cleve and W. Mulzer

p

q2

q1

P ′

s

t
P

(a) P ′ is the subset of
P cut off by the three
points p, q1, and q2. Both
points are convex, one is
advanced.

P ′

s

t
P

p

q1

q2

(b) Since q2 is reflex we
shoot a ray until it hits
the boundary. t lies to the
left of this ray.

P ′

s

t
P

p

q1
q2

(c) p is relocated to the
previous position of q2
and P ′ is shrunk along the
ray.

Fig. 4: An illustration of the steps in the Makestep algorithm.

triangulation algorithm can be challenging and since this is not the main objective
of our study, we relied for this on the Python Triangle library by Rufat [16],
a Python wrapper for Shewchuk’s Triangle, which was written in C [17]. We
note that Triangle does not provide a linear-time triangulation algorithm, which
would be needed to achieve the theoretically possible linear running time for
the shortest path algorithm. Instead, it contains three different implementations,
namely Fortune’s sweep line algorithm, a randomized incremental construction,
and a divide-and-conquer method. All three implementations give a running
time of O(n log n). For our study, we used the divide-and conquer algorithm,
the default choice. In the evaluation, we did not include the triangulation phase
in the time and memory measurement for running the algorithm by Lee and
Preparata.

3.1 General Implementation Details

All three constant-workspace algorithms have been presented with a general
position assumption: Delaunay and Makestep assume that no three vertices lie on
a line, while Trapezoid assumes that no two vertices have the same x-coordinate.
Our implementations of Delaunay and Makestep also assume general position,
but they throw exceptions if a non-recoverable general position violation is
encountered. Most violations, however, can be dealt with easily in our code; e.g.
when trying to find the constrained Delaunay triangle(s) for a diagonal, we can
simply ignore points collinear to this diagonal. For the case of Trapezoid , Asano et
al. [3] described how to enforce the general position assumption by changing the
x-coordinate of every vertex to x + εy for some small enough ε > 0 such that
the x-order of all vertices is maintained. In our implementation, we apply this
method to every polygon in which two vertices share the same x-coordinate.

Geodesic Shortest Path Algorithms with Constant Workspace 7

cusp

b

tw

u

vv

Fig. 5: During the gift wrapping from the cusp to the diagonal b, the vertices
need to be restricted to the shaded area. Otherwise, u would be considered to be
part of the geodesic shortest path, as it is to the left of vw.

The coordinates are stored as 64 bit IEEE 754 floats. In order to prevent
problems with floating point precision or rounding, we take the following steps:
first, we never explicitly calculate angles, but we rely on the usual three-point-
orientation test, i.e., the computation of a determinant to find the position of a
point c relative to the directed line through to points a and b [7]. Second, if an
algorithm needs to place a point somewhere in the relative interior of a polygon
edge, we store an additional edge reference to account for inaccuracies when
calculating the new point’s coordinates.

3.2 Implementing the Algorithm by Lee and Preparata

The algorithm by Lee and Preparata can be implemented easily, in a straightfor-
ward fashion. There are no particular edge cases or details that we need to take
care of. Disregarding the code for the geometric primitives, the algorithm needs
less then half as many lines of code than the other algorithms.

3.3 Implementing Delaunay and Trapezoid

In both constant-workspace adaptations of the algorithm by Lee and Preparata,
we encounter the following problem: whenever the cusp of the current funnel
changes, we need to find the cusp of the new funnel, and we need to find the
piece of the geodesic shortest path that connects the former cusp to the new
cusp. In their description of the algorithm, Asano et al. [3] only say that this
should be done with an application of gift wrapping (Jarvis’ march) [7]. While
implementing these two algorithms, we noticed that a naive gift wrapping step
that considers all the vertices on P between the cusp of the current funnel and
the next diagonal might include vertices that are not visible inside the polygon.
Figure 5 shows an example: here b is the next diagonal, and naively we would look
at all vertices along the polygon boundary between v and w. Hence, u would be

8 J. Cleve and W. Mulzer

q1

q2

succ(q1)

p

q′

t

q1

p

q′

t

Fig. 6: Left: Asano et al. [2] state that one should check whether “t lies in the
subpolygon from q′ to q1.” This subpolygon, however, is not clearly defined as
the line segment q′q1 does not lie inside P . Considering pq′ instead and using
q1pq

′ to shrink the cutoff region gives the correct result on the right.

considered as a gift wrapping candidate, and since it forms the largest angle with
the cusp and v (in particular, an angle that is larger than the angle formed by w)
it would be chosen as the next point, even though w should be the cusp of the
next funnel. A simple fix for this problem would be an explicit check for visibility
in each gift-wrapping step. Unfortunately, the resulting increase in the running
time would be too expensive for a realistic implementation of the algorithms.

Our solution for Trapezoid is to consider only vertices whose x-coordinate is
between the cusp of the current vertex and the point where the current visibility
cone crosses the boundary of P for the first time. For ease of implementation,
one can also limit it to the x-coordinate of the last trapezoid boundary visible
from the cusp. Figure 5 shows this as the dotted green region. For Delaunay , a
similar approach can be used. The only difference is that the triangle boundaries
in general are not vertical lines.

3.4 Implementing Makestep

Our implementation of the Makestep algorithm is also relatively straightforward.
Nonetheless, we would like to point out one interesting detail; see Fig. 6. The
description by Asano et al. [2] says that to advance the visibility cone, we should
check if “t lies in the subpolygon from q′ to q1.” If so, the visibility cone should
be shrunk to q′pq1, otherwise to q2pq

′.

However, the “subpolygon from q′ to q1” is not clearly defined for the case
that the line segment q′q1 is not contained in P . To avoid this difficulty, we
instead consider the line segment pq′. This line segment is always contained in
P , and it divides the cutoff region P ′ into two parts, a “subpolygon” between q′

and q1 and a “subpolygon” between q2 and q′. Now we can easily choose the one
containing t.

Geodesic Shortest Path Algorithms with Constant Workspace 9

4 Experimental Setup

We now describe how we conducted the experimental evaluation of our four
implementations for geodesic shortest path algorithms.

4.1 Generating the Test Instances

Our experimental approach is as follows: given a desired number of vertices n, we
generate 4–10 (pseudo)random polygons with n vertices. For this, we use a tool
developed in a software project carried out under the supervision of Günter Rote
at the Institute of Computer Science at Freie Universität Berlin [10]. Among
others, the tool provides an implementation of the Space Partitioning algorithm
for generating random simple polygons presented by Auer and Held [4].

Next, we generate the set S of desired endpoints for the geodesic shortest
paths. This is done as follows: for each edge e of each generated polygon, we
find the incident triangle te of e in the constrained Delaunay triangulation of
the polygon. We add the barycenter of te to S. In the end, the set S will have
between bn/2c and n− 2 points. We will compute the geodesic shortest path for
each pair of distinct points in S.

4.2 Executing the Tests

For each pair of points s, t ∈ S, we find the geodesic shortest path between s and
t using each of the four implemented algorithms. Since the number of pairs grows
quadratically in n, we restrict the tests to 1500 random pairs for all n ≥ 200.

First, we run each algorithm once in order to assess the memory consump-
tion. This is done by using the get traced memory function of the built-in
tracemalloc module which returns the peak and current memory consumption—
the difference tells us how much memory was used by the algorithm. Starting the
memory tracing just before running the algorithm gives the correct values for
the peak memory consumption. In order to obtain reproducible numbers we also
disable Python’s garbage collection functionality using the built-in gc.disable

and gc.enable functions.
After that, we run the algorithm between 5 and 20 times, depending on how

long it takes. We measure the processor time for each run with the process time

function of the time module which gives the time during which the process was
active on the processor in user and in system mode. We then take the median of
the times as a representative running time for this point pair.

4.3 Test Environment

Since we have a quadratic number of test cases for each instance, our experiments
take a lot of time. Thus, the tests were distributed on multiple machines and on
multiple cores. We had six computing machines at our disposal, each with two
quad-core CPUs. Three machines had Intel Xeon E5430 CPUs with 2.67 GHz;

10 J. Cleve and W. Mulzer

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

vertices vs. memory in kB

Lee-Preparata O(n) Makestep O(1)

Trapezoid O(1) Delaunay O(1)

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

vertices vs. memory in kB

Lee-Preparata O(n) Makestep O(1)

Trapezoid O(1) Delaunay O(1)

Fig. 7: Memory consumption for random instances. The outlined shapes are the
median values; the semi-transparent crosses are maximum values.

the other three had AMD Opteron 2376 CPUs with 2.3 GHz. All machines had
32 GB RAM, even though, as can be seen in the next section, memory was never
an issue. The operating system was a Debian 8 and we used version 3.5 of the
Python interpreter to implement the algorithms and to execute the tests.

5 Experimental Results

The results of the experiments can be seen in the following plots. The plot in
Figure 7 shows the median and maximum memory consumption as solid shapes
and transparent crosses, respectively, for each algorithm and for each input size.
More precisely, the plot shows the median and the maximum over all polygons
with a given size and over all pairs of points in each such polygon.

We observe that the memory consumption for Trapezoid and for Makestep is
always smaller than a certain constant. At first glance, the shape of the median
values might suggest logarithmic growth. However, a smaller number of vertices
leads to a higher probability that s and t are directly visible to each other. In
this case, many geometric functions and subroutines, each of which requires an
additional constant amount of memory, are not called. A large number of point
pairs with only small memory consumption naturally entails a smaller median

Geodesic Shortest Path Algorithms with Constant Workspace 11

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

14

16
vertices vs. time in s

Lee-Preparata O(n) Makestep O(n2)

Trapezoid O(n2) Delaunay O(n3)

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

14

16
vertices vs. time in s

Lee-Preparata O(n) Makestep O(n2)

Trapezoid O(n2) Delaunay O(n3)

0 500 1000 1500 2000 2500 3000

0

0.1

0.2

0.3

0.4

0.5

vertices vs. time in s

Lee-Preparata O(n) Makestep O(n2)

Trapezoid O(n2) Delaunay O(n3)

Fig. 8: Runtime for random instances. Outlined shapes are median values; semi-
transparent crosses are maximum values. The bottom plot is a scaled version of
the top.

12 J. Cleve and W. Mulzer

value. We can observe a very similar effect in the memory consumption of the
Lee-Preparata algorithm for small values of n. However, as n grows, we can see
that the memory requirement begins to grow linearly with n.

The second plot in Figure 8 shows the median and the maximum running
time in the same way as Figure 7. Not only does Delaunay have a cubic running
time, but it also seems to exhibit a quite large constant: it grows much faster
than the other algorithms.

In the lower part of Figure 8, we see the same x-domain, but with a much
smaller y-domain. Here, we observe that Trapezoid and Makestep both have a
quadratic running time; Trapezoid needs about two thirds of the time required
by Makestep. Finally, the linear-time behavior of Lee-Preparata can clearly be
discerned.

Additionally, we observed that the tests ran approximately 85 % slower on the
AMD machines than on the Intel servers. This reflects the difference between the
clock speeds of 2.3 GHz and 2.67 GHz. Since the tests were distributed equally
on the machines, this does not change the overall qualitative results and the
comparison between the algorithms.

6 Conclusion

We have implemented and experimented with three different constant-workspace
algorithms for geodesic shortest paths in simple polygons. Not only did we observe
the cubic worst-case running time of Delaunay , but we also noticed that the
constant factor is rather large. This renders the algorithm virtually useless already
for polygons with a few hundred vertices, where the shortest path computation
might, in the worst case, take several minutes.

As predicted by the theory, Makestep and Trapezoid exhibit the same asymp-
totic running time and space consumption. Trapezoid has an advantage in the
constant factor of the running time, while Makestep needs only about half as
much memory. Since in both cases the memory requirement is bounded by a
constant, Trapezoid would be our preferred algorithm.

We chose Python for the implementation mostly due to our previous pro-
gramming experience, good debugging facilities, fast prototyping possibilities,
and the availability of numerous libraries. In hindsight, it might have been better
to choose another programming language that allows for more low-level control
of the underlying hardware. Python’s memory profiling and tracking abilities are
limited, so that we cannot easily get a detailed view of the used memory with all
the variables. Furthermore, a more detailed control of the memory management
could be useful for performing more detailed experiments.

References

1. Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rote, G., Schulz, A.:
Memory-constrained algorithms for simple polygons. Comput. Geom. Theory Appl.
46(8), 959–969 (2013)

Geodesic Shortest Path Algorithms with Constant Workspace 13

2. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. J. of Computational Geometry 2(1), 46–68 (2011)

3. Asano, T., Mulzer, W., Wang, Y.: Constant-work-space algorithms for shortest
paths in trees and simple polygons. J. Graph Algorithms Appl. 15(5), 569–586
(2011)

4. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proc. 8th
Canad. Conf. Comput. Geom. (CCCG). pp. 38–43 (1996)

5. Baffier, J.F., Diez, Y., Korman, M.: Experimental study of compressed stack algo-
rithms in limited memory environments. In: Proc. 17th Inter. Symp. Experimental
Algorithms, (SEA). pp. 19:1–19:13 (2018)

6. Banyassady, B., Korman, M., Mulzer, W.: Computational geometry column 67.
SIGACT News 49(2), 77–94 (2018)

7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry.
Theory and Applications. Springer-Verlag, 3rd edn. (2008)

8. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom.
6, 485–524 (1991)

9. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)
10. Dierker, S., Ehrhardt, M., Ihrig, J., Rohde, M., Thobe, S., Tugan, K.: Ab-

schlussbericht zum Softwareprojekt: Zufällige Polygone und kürzeste Wege (2012),
https://github.com/marehr/simple-polygon-generator, Institut für Informatik, Freie
Universität Berlin

11. Ghosh, S.K.: Visibility algorithms in the plane. Cambridge University Press (2007)
12. Har-Peled, S.: Shortest path in a polygon using sublinear space. J. of Computational

Geometry 7(2), 19–45 (2016)
13. Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing in Science &

Engineering 9(3), 90–95 (2007)
14. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear

barriers. Networks 14(3), 393–410 (1984)
15. Python Software Foundation: Python, https://www.python.org/, version 3.5
16. Rufat, D.: Python Triangle (2016), http://dzhelil.info/triangle/, version 20160203
17. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delau-

nay triangulator. In: Workshop on Applied Computational Geormetry, Towards
Geometric Engineering (WACG). pp. 203–222 (1996)

18. Tantau, T.: Logspace optimization problems and their approximability properties.
Theoret. Comput. Sci. 41(2), 327–350 (2007)

A Tables of Experimental Results

Here we list the experimental results shown in Figs. 7 and 8.

https://github.com/marehr/simple-polygon-generator
https://www.python.org/
http://dzhelil.info/triangle/

14 J. Cleve and W. Mulzer

Table 1: The median and maximum memory usage in bytes for all runs with a
specific number of vertices n.

Delaunay Lee-Preparata Makestep Trapezoid

n median max median max median max median max

10 3048 4976 528 952 2096 2552 2976 5344
20 3864 5512 696 1032 2240 2776 3992 5432
30 4080 5536 808 1360 2344 2840 4208 5704
40 4416 5536 952 1592 2344 2840 4672 5616

60 1184 1872 2384 2840 4784 5808
80 1400 2264 2376 2840 4904 5752

100 1464 2200 2392 2840 4952 5704
125 1792 3216 2384 2840 5040 5720

150 1832 3160 2392 2840 5024 6104
200 2152 3472 2384 2840 5048 6200
250 2264 3880 2392 2840 5144 6240
300 2376 4928 2440 3072 5284 5964

350 2360 4672 2496 3120 5288 6608
400 2880 4672 2512 3120 5328 6284
450 2616 5008 2532 3200 5304 6588
500 3048 5064 2532 3120 5484 6248

550 3552 5736 2540 3120 5480 6476
600 3824 5680 2552 3120 5404 6360
650 3104 5904 2560 3120 5472 6276
700 3496 5568 2568 3120 5528 6352

800 4224 7752 2580 3072 5528 6768
900 4448 7512 2580 3112 5516 6576

1000 4504 7248 2580 3120 5528 6648
1100 4608 7808 2580 3120 5556 6532

1200 4560 7472 2588 3120 5588 6468
1300 5792 10 480 2588 3120 5592 6240
1400 5512 9936 2588 3112 5572 6240
1500 6384 10 264 2580 3112 5572 6896

2000 6792 10 328 2580 3112 5584 6580
2500 6232 9912 2580 3120 5624 6168
3000 7560 24 448 2580 3104 5616 6392

Geodesic Shortest Path Algorithms with Constant Workspace 15

Table 2: The median and maximum running times in seconds for all runs with a
specific number of vertices n.

Delaunay Lee-Preparata Makestep Trapezoid

n median max median max median max median max

10 0.014 019 0.064 309 0.000 367 0.000 910 0.000 519 0.004 162 0.000 820 0.002 603
20 0.081 347 0.361 370 0.000 616 0.001 613 0.001 156 0.011 853 0.002 010 0.007 343
30 0.207 516 0.943 375 0.000 830 0.002 879 0.003 319 0.026 406 0.003 655 0.014 552
40 0.469 530 2.112 217 0.001 045 0.002 166 0.006 867 0.033 851 0.005 716 0.020 334

60 0.001 399 0.002 918 0.013 428 0.056 691 0.009 516 0.030 625
80 0.001 756 0.003 444 0.024 055 0.100 309 0.016 658 0.061 326

100 0.002 056 0.004 030 0.033 428 0.150 279 0.022 560 0.068 170
125 0.002 501 0.005 372 0.046 976 0.217 762 0.033 954 0.101 315

150 0.002 888 0.005 534 0.061 505 0.232 505 0.041 352 0.133 888
200 0.003 576 0.007 240 0.100 989 0.354 232 0.064 532 0.193 956
250 0.004 321 0.008 537 0.137 829 0.458 281 0.086 141 0.260 132
300 0.005 073 0.009 685 0.173 749 0.739 960 0.110 249 0.407 216

350 0.005 579 0.010 597 0.200 256 0.808 604 0.128 425 0.457 386
400 0.006 372 0.011 761 0.249 399 0.887 698 0.175 070 0.589 235
450 0.006 710 0.013 537 0.282 497 1.096 251 0.175 412 0.587 010
500 0.007 469 0.015 005 0.383 682 1.541 501 0.256 470 0.746 144

550 0.008 528 0.016 190 0.415 579 1.666 938 0.261 306 0.859 130
600 0.008 899 0.017 127 0.486 157 1.660 158 0.307 261 0.969 043
650 0.009 350 0.018 987 0.520 370 1.707 651 0.320 547 0.991 330
700 0.010 033 0.021 339 0.548 668 2.018 272 0.323 926 1.187 180

800 0.011 583 0.021 906 0.729 638 2.502 922 0.452 032 1.526 597
900 0.012 974 0.029 481 0.866 354 3.218 503 0.536 978 1.866 497

1000 0.014 204 0.029 770 1.019 635 4.070 813 0.623 762 1.969 603
1100 0.015 121 0.032 160 1.239 577 3.846 221 0.717 239 2.040 144

1200 0.016 401 0.035 842 1.251 472 4.010 515 0.733 767 2.282 640
1300 0.018 357 0.039 272 1.506 918 5.627 138 1.001 474 3.095 028
1400 0.019 354 0.043 886 1.641 150 5.707 774 1.026 240 3.415 236
1500 0.021 279 0.043 013 1.990 088 7.978 124 1.261 539 3.941 024

2000 0.026 627 0.054 653 2.821 684 9.151 548 1.731 935 4.854 338
2500 0.032 861 0.070 760 3.533 656 12.003 607 2.187 277 6.840 824
3000 0.039 188 0.081 773 5.616 593 14.949 720 3.159 590 9.751 315

	An Experimental Study of Algorithms for Geodesic Shortest Paths in the Constant-Workspace Model

