Skip to main content

A Machine Learning Framework for Volume Prediction

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11544))

Included in the following conference series:

  • 642 Accesses

Abstract

Computing the exact volume of a polytope is a #P-hard problem, which makes the computation for high dimensional polytopes computationally expensive. Due to this cost of computation, randomized approximation algorithms is an acceptable solution in practical applications. On the other hand, machine learning techniques, such as neural networks, saw a lot of success in recent years. We propose machine learning approaches to volume prediction and volume comparison. We employ various network architectures such as feed-forward networks, autoencoders and end-to-end networks. We develop different types of models with these architectures that emphasize different parts of the problem, such as representation of polytopes, volume comparison between polytopes and volume prediction. Our results have varying rate of success depending on model and experimentation parameters. This work intends to start the discussion about applying machine learning techniques to computationally hard geometric problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calès, L., Chalkis, A., Emiris, I.Z., Fisikopoulos, V.: Practical volume computation of structured convex bodies, and an application to modeling portfolio dependencies and financial crises. In: Speckmann, B., Tóth, C.D. (eds.) 34th International Symposium on Computational Geometry, SoCG 2018, 11–14 June 2018, Budapest, Hungary. LIPIcs, vol. 99, pp. 19:1–19:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.SoCG.2018.19

  2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1179, http://aclweb.org/anthology/D14-1179

  3. Dai, A.M., Le, Q.V.: Semi-supervised sequence learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 3079–3087. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf

  4. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17(5), 967–974 (1988). https://doi.org/10.1137/0217060

    Article  MathSciNet  MATH  Google Scholar 

  5. Emiris, I.Z., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope volume. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG 2014, pp. 318:318–318:327. ACM, New York (2014). https://doi.org/10.1145/2582112.2582133, http://doi.acm.org/10.1145/2582112.2582133

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  7. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  9. Jaekel, U.: A monte carlo method for high-dimensional volume estimation and application to polytopes. In: Sato, M., Matsuoka, S., Sloot, P.M.A., van Albada, G.D., Dongarra, J.J. (eds.) Proceedings of the International Conference on Computational Science, ICCS 2011. Procedia Computer Science. Nanyang Technological University, Singapore, 1–3 June 2011, vol. 4, pp. 1403–1411. Elsevier (2011). https://doi.org/10.1016/j.procs.2011.04.151

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  11. Paffenholzr, A.: Smooth reflexive lattice polytopes. https://polymake.org/polytopes/paffenholz/www/fano.html

  12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  14. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceeding of the NIPS. Montreal, CA (2014). http://arxiv.org/abs/1409.3215

  15. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015). http://arxiv.org/abs/1409.4842

  16. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.3.0) (2019). https://www.sagemath.org

  17. Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995). https://doi.org/10.1007/978-1-4613-8431-1

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the project 117E501 under the program 3001 of the Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umutcan Önal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Önal, U., Zafeirakopoulos, Z. (2019). A Machine Learning Framework for Volume Prediction. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics