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Abstract. Identifying dense bipartite subgraphs is a common graph
data mining task. Many applications focus on the enumeration of all
maximal bicliques (MBs), though sometimes the stricter variant of max-
imal induced bicliques (MIBs) is of interest. Recent work of Kloster et al.
introduced a MIB-enumeration approach designed for “near-bipartite”
graphs, where the runtime is parameterized by the size k of an odd cy-
cle transversal (OCT), a vertex set whose deletion results in a bipartite
graph. Their algorithm was shown to outperform the previously best
known algorithm even when k was logarithmic in |V |. In this paper, we
introduce two new algorithms optimized for near-bipartite graphs - one
which enumerates MIBs in time O(MI |V ||E|k), and another based on the
approach of Alexe et al. which enumerates MBs in time O(MB |V ||E|k),
where MI and MB denote the number of MIBs and MBs in the graph, re-
spectively. We implement all of our algorithms in open-source C++ code
and experimentally verify that the OCT-based approaches are faster in
practice than the previously existing algorithms on graphs with a wide
variety of sizes, densities, and OCT decompositions.

Keywords: bicliques · odd cycle transversal · bipartite · enumeration
algorithms · parameterized complexity

1 Introduction

Bicliques (complete bipartite graphs) naturally arise in many data mining appli-
cations, including detecting cyber communities [18], data compression [1], epi-
demiology [23], artificial intelligence [30], and gene co-expression analysis [15,16].
In many settings, the bicliques of interest are maximal (not contained in any
larger biclique) and/or induced (each side of the bipartition is independent in
the host graph), and there is a large body of literature giving algorithms for
enumerating all such subgraphs [3,5,6,20,22,23,26,32]. Many of these approaches
make strong structural assumptions on the host graph; the case when the host
graph is bipartite has been particularly well-studied, and the iMBEA algorithm
of Zhang et al. has been empirically established to be state-of-the-art [32]. Un-
til recently, the only known non-trivial algorithm for enumerating maximal in-
duced bicliques (MIBs) in general graphs was that of Dias et al. which did
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so in lexicographic order [5]. In [17], Kloster et al. presented a new algorithm
for enumerating MIBs in general graphs, OCT-MIB, which extended ideas from
iMBEA to work on non-bipartite graphs by using an odd cycle transversal (OCT
set): a set of nodes O such that G[V \ O] is bipartite. This yielded an algo-
rithm with runtime O(MInmn

2
O3nO/3) where nO = |O|, MI is the number of

MIBs in G = (V,E), and n and m denote |V | and |E|, respectively. The 3nO/3

term arises from OCT-MIB’s dependence on the number of maximal independent
sets (MISs) in O. In this paper, we give new algorithms for enumerating both
MIBs and maximal, not necessarily induced bicliques (MBs) in general graphs.
We first present OCT-MIB-II which again leverages odd cycle transversals to
enumerate MIBs in time O(MInmnO). In contrast to OCT-MIB, the worst-case
runtime of OCT-MIB-II is not dependent on the number of MISs in O, making it
better than OCT-MIB when nO ∈ ω(1). We also give a second algorithm for MIB-
enumeration, Enum-MIB, which has runtime O(MInm). Enum-MIB is essentially
a modified version of the algorithm of Dias et al. [5], which achieves a faster
runtime by dropping the lexicographic output requirement.

In the setting considering non-induced bicliques, the state-of-the-art ap-
proach is MICA of Alexe et al. [3]. MICA employs a consensus mechanism to
iteratively find maximal bicliques by combining them together, resulting in
an O(MBn

3) algorithm, where MB is the number of MBs. We introduce a
new algorithm OCT-MICA which leverages odd cycle transversals and runs in
O(MB(n2nO +mn)) time.

Since all graphs have OCT sets (although they can be sizeO(n), as in cliques),
OCT-MIB, OCT-MIB-II, and OCT-MICA can all be run in the general case; their
correctness does not require minimality or optimality of the OCT set. Further,
we implement OCT-MIB-II, Enum-MIB and OCT-MICA in open source C++ code,
and evaluate their performance on a suite of synthetic graphs with known OCT
decompositions. Our experiments show that OCT-MICA and OCT-MIB-II are the
dominant algorithms for their respective problems in many settings. Their effi-
ciencies allow us to run on larger graphs than in [17].

We begin with preliminaries and a brief discussion of related work in Sec-
tion 2, then describe each of our three new algorithms and provide proofs of their
correctness and runtimes in Section 3. We highlight several implementation de-
tails in Section 4, before presenting our experimental evaluation in Section 5.

2 Preliminaries

2.1 Related work

The complexity of finding bicliques is well-studied, beginning with the results
of Garey and Johnson [7] which establish that in bipartite graphs, finding the
largest balanced biclique is NP-hard but the largest biclique can be found in
polynomial time. Particularly relevant to the mining setting, Kuznetsov showed
that enumerating MBs in a bipartite graph is #P-complete [19]. Finding the
biclique with the largest number of edges was shown to be NP-complete in gen-
eral graphs [31], but the case of bipartite graphs remained open for many years.
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Several variants (including the weighted version) were proven NP-complete in [4]
and in 2000, Peeters finally resolved the problem, proving the edge maximization
variant is NP-complete in bipartite graphs [25].

For the problem of enumerating MIBs, the best known algorithm in general
graphs is due to Dias et al. [5]; in the non-induced setting, approaches include a
consensus algorithm MICA [3], an efficient algorithm for small arboricity [6], and
a general framework for enumerating maximal cliques and bicliques [8], with
MICA the most efficient among them, running in O(MBn

3). We note that, as
described, the method in [5] may fail to enumerate all MIBs; a modified, correct
version was given in [17].

There has also been significant work on enumerating MIBs in bipartite graphs.
We note that since all bicliques in a bipartite graph are necessarily induced,
non-induced solvers for general graphs (such as MICA) can be applied, and have
been quite competitive. The best known algorithm however, is due to Zhang
et al. [32] and directly exploits the bipartite structure. Other approaches in bi-
partite graphs include frequent closed itemset mining [20] and transformations
to the maximal clique problem [22]; faster algorithms are known when a lower
bound on the size of bicliques to be enumerated is assumed [23,26].

Kloster et al. [17] extended techniques for bipartite graphs to the general
setting using odd cycle transversals, a form of “near-bipartiteness” which arises
naturally in many applications [10,24,27]. This work resulted in OCT-MIB, an
algorithm for enumerating MIBs in a general graph, parameterized by the size
of a given OCT set. Although finding a minimum size OCT set is NP-hard,
the problem of deciding if an OCT set with size k exists is fixed parameter
tractable (FPT) with algorithms in [21] and [14] running in times O(3kkmn)
and O(4kn), respectively. We note non-optimal OCT sets only affect the runtime
(not correctness) of our algorithms, allowing us to use heuristic solutions. Recent
implementations [9] of a heuristic ensemble alongside algorithms from [2,12]
alleviate concerns about finding an OCT decomposition creating a barrier to
usability.

2.2 Notation and terminology

Let G = (V,E) be a graph; we set n = |V | and m = |E|. We define N(v) to be the
neighborhood of v ∈ V and write N(v) for v’s non-neighbors. An independent
set T ⊆ V (G) is a maximal independent set (MIS) if T is not contained in any
other independent set of G. Unless otherwise noted, we assume without loss of
generality that G is connected.

A biclique A × B in a graph G = (V,E) consists of non-empty disjoint sets
A,B ⊂ V such that every vertex of A is neighbors with every vertex of B. We
say a biclique A × B is induced if both A and B are independent sets in G. A
maximal biclique (MB) in G is a biclique not properly contained in any other; a
maximal induced biclique (MIB) is analogous among induced bicliques. We use
MB and MI to denote the number of MBs and MIBs in G, respectively. If O
is an OCT set in G, we denote the corresponding OCT decomposition of G by
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G[L,R,O], where the induced subgraph G[L ∪R] is bipartite. We write nL, nR,
and nO for |L|, |R|, and |O|, respectively.

3 Algorithms

In this section we provide three novel algorithms, two of which of solve Maximal
Induced Biclique Enumeration (Enum-MIB and OCT-MIB-II) and the other
of which solves Maximal Biclique Enumeration (OCT-MICA). Both Enum-MIB

and OCT-MIB-II follow the same general framework, which we now describe.

3.1 MIB Algorithm Framework

The MIB-enumeration algorithms both use two subroutines, MakeIndMaximal
and AddTo. MakeIndMaximal takes in (C, S), where C is an induced biclique and
S ⊆ V , and either returns a MIB C+ where C ⊆ C+, C+ ⊆ C ∪ S, C 6= ∅,
or returns ∅. If it returns ∅ and C 6= ∅ then there is another MIB D which
contains C and v ∈ (V \ S) \ C. AddTo takes in (C, v) where C = C1 × C2 is
an induced biclique and v ∈ V \ (C1 ∪ C2), and returns the induced biclique
where v is added to C1, N(v) is removed from C1, and N(v) is removed from
C2 if C2 ∩N(v) 6= ∅; otherwise, ∅ is returned. Both MakeIndMaximal and AddTo

operate in O(m) time. We defer algorithmic details and proofs of the complexity
and correctness for these routines to the Appendix.

The MIB-enumeration framework (shown in Algorithm 1) begins by finding
a seed set of MIBs CS . At a high level, it operates by attempting to add vertices
from the designated set IS to previously found MIBs to make them maximal.
We utilize a dictionary D to track which MIBs have already been found and a
queue Q to store bicliques which have not yet been explored. We now prove two
technical lemmas used to show the correctness of this framework.

Lemma 1. Let X×Y be a MIB in graph G which contains a non-empty subset
of R × S, another MIB in G. Running AddTo with parameters X × Y and v ∈
R\(X∪Y ) returns a biclique which contains R∩X, S∩Y , and v if Y ∩N(v) 6= ∅.

Proof. By construction, v must be independent from R and completely con-
nected to S. Thus, none of R ∩ X will be removed from X and all of S ∩ Y
will remain in Y , as required. Therefore, as long as Y ∩ N(v) 6= ∅, the desired
biclique is returned.

Lemma 2. In Algorithm 1, if there exists a MIB A′×B′ in D such that A\IS ⊆
A′, B \ IS ⊆ B′ and (A ∪ B) ∩ (A′ ∪ B′) 6= ∅, for each MIB A × B in G, then
all MIBs in G are included in D.

Proof. Assume not. Let A×B be a MIB in G which is not in D with |(A∪B)\IS |
maximum. Let A′×B′ be the MIB in D such that A \ IS ⊆ A′, B \ IS ⊆ B′ and
(A ∪B) ∩ (A′ ∪B′) 6= ∅ and let v ∈ ((A ∪B) \ (A′ ∪B′)) ⊆ IS . Without loss of
generality assume B ∩B′ 6= ∅ and v ∈ A.
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Algorithm 1 MIB-enumeration algorithm framework

1: Input: G = (V,E), IS
2: CS = FindSeedSet(G) . set of initial MIBs
3: Add each C ∈ CS to D and Q
4: while Q is not empty do
5: X × Y ← pop(Q)
6: for j ∈ IS \ (X ∪ Y ) do
7: C1 = AddTo(X × Y, j)
8: C ′1 = MakeIndMaximal(C1, IS)
9: if C ′1 is not in D then

10: Add C ′1 to D and Q
11: C2 = AddTo(Y ×X, j)
12: C ′2 = MakeIndMaximal(C2, IS)
13: if C ′2 is not in D then
14: Add C ′2 to D and Q
15: return D

Consider the iteration of Algorithm 1 when X × Y = A′ × B′ and j = v
(lines 5-6). By Lemma 1, one of the calls to AddTo returns an induced biclique
C which contains A \ IS , B \ IS , and v. Both sides of C are non-empty (since
B ∩ B′ 6= ∅ and v ∈ A). If C = A × B we obtain a contradiction, as MakeInd-

Maximal (C, IS) would return C, resulting in its addition to D. Otherwise, either
MakeIndMaximal returns ∅ or a biclique C ′ = A′×B′ which is added to D. Since
both sides of C are nonempty, if MakeIndMaximal returns ∅, there exists a MIB
in G containing C and x ∈ (V \ IS) \ C . Let A′ × B′ be such a MIB; since it
has more vertices in V \ IS than C, it must be in D, and we set C ′ = A′ × B′.
In either case, C ⊆ (A′ ∪ B′), |(A ∪ B) \ (A′ ∪ B′)| < |(A ∪ B) \ (X ∪ Y )|. We
can repeat this argument for the new A′ × B′, noting that (A ∪ B) ∩ (A′ ∪ B′)
will include vertices on both sides. Thus, the argument still holds without any
assumption on the non-empty side of the intersection and |(A ∪ B) \ (A′ ∪ B′)|
will strictly decrease; when it reaches 0, A′ ×B′ = A×B, a contradiction.

Note that as MakeIndMaximal only returns MIBs, this framework will only
include MIBs in D. Together with Lemma 2, this yields the following corollary.

Corollary 1. If for every MIB A × B ∈ G there is a MIB A′ × B′ ∈ CS such
that A\ IS ⊆ A′, B \ IS ⊆ B′ and (A∪B)∩ (A′∪B′) 6= ∅, then upon completion
of Algorithm 1, D will contain exactly the MIBs in G.

Recall that AddTo and MakeIndMaximal each run in O(m) time. Combining
this with the fact that each MIB in G is popped at most once from Q we have:

Corollary 2. The time complexity of this framework is O(MImn + INIT ),
where INIT is the time needed by FindSeedSet to compute CS.
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3.2 Enum-MIB

We now present Enum-MIB, which follows the MIB-enumeration framework. To
form CS , for each vertex v ∈ V we run MakeIndMaximal ({v} × {x}, V ) where
x ∈ N(v) and add it to CS . We also let IS = V . To show the correctness of
this approach, we note that V \ V = ∅ and any MIB contains the empty set.
Thus all that remains to show is that for each MIB there is a MIB in CS with
which it has a non-empty intersection. As every v ∈ V is in some MIB in CS ,
this condition is met. Thus, via Corollary 1, Enum-MIB will find all MIBs. There
may be O(n) duplicates in CS which can be removed in O(n) time per duplicate.
As MakeIndMaximal runs in O(m) time, by Corollary 2, the time complexity of
Enum-MIB is O(MImn). We note that Enum-MIB is essentially a simplified version
of the LexMIB algorithm from [17] which does not guarantee lexicographic order
on output.

3.3 OCT-MIB-II

Next we describe OCT-MIB-II, an algorithm for enumerating all MIBs in a graph
with a given OCT decomposition G[L,R,O]. OCT-MIB-II also makes use of the
MIB-enumeration framework described in Section 3.1. In the calls to MakeInd-

Maximal we let IS = O. To form CS , we begin by running iMBEA [32] to find
the set CB of MIBs in G[L ∪R]. For each CB ∈ CB we run MakeIndMaximal on
(CB , O). This creates a set XB of MIBs in G.

Then for each node o ∈ O, we find the set of MISs in N(o). This can be
done in O(mn) time per MIS using the algorithm of Tsukiyama et al. [28]. For
each MIS Io found, run MakeIndMaximal on the induced biclique {o} × Io. Let
the multiset of all MIBs produced by this process be denoted XQ. Note that
a MIB may be in XQ up to O(nO) times (once per o ∈ O, stemming from an
MIS in N(o)), but we can remove duplicates from XQ in O(n) per MIB, forming
X ′M . We then let CS = XB ∪ X ′M . Thus, FindSeedSet runs in O(mnnO) per
unique MIB found, and by Corollary 2, the total time complexity of OCT-MIB-II
is O(MImnnO).

To show the correctness of OCT-MIB-II, we must show that for every MIB
in G, we include a MIB in CS which includes all of its non-OCT nodes and a
node in the MIB if the MIB is completely contained in O. If an entire MIB C
is contained in O, then any MIB containing {o} × Io for o ∈ C suffices. If a
MIB has non-OCT nodes on both sides, then there must be a MIB in XB which
contains these non-OCT nodes because there is a MIB in G[L ∪ R] containing
them. If a MIB has all of its non-OCT nodes on one side, then there is an OCT
node o which is neighbors with all of the non-OCT nodes, which thus must be
contained in an MIS in N(o). Thus, by Corollary 1, we find all of the MIBs in G.

3.4 OCT-MICA

OCT-MICA is an algorithm for enumerating the maximal bicliques (MBs) in a
general graph with a given OCT decomposition G[L,R,O]. We adapt the ap-
proach of MICA [3], which relies on a seed set of bicliques which “cover” the
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Algorithm 2 OCT-MICA

1: procedure Enumerate(G = (L,R,O))
2: MB′ = BipartiteSolve(L,R). Implementation of iMBEA, O(m′nM ′B)
3: for B ∈MB′ do . O(M ′B)
4: B = MakeMaximal(B) . Extend in place, O(m)

5: C0 = {}
6: for v in O do . Initialize Bicliques from stars, O(nO)
7: B = MakeMaximal(v ×N(v)) . O(m)
8: C0.add(B)

9: C =MB′ ∪ C0.
10: sort(C) . O(M ′B log(M ′B))
11: found = true
12: while found do
13: found = false
14: for B1 in C0 do . O(nO)
15: for B2 in C do . O(MB)
16: for B3 in Consensus(B1, B2) do
17: B4 = MakeMaximal(B3) . O(m)
18: if B4 not in C then . O(n log(MB))
19: found = true
20: C.InsertInSortedOrder(B4)

21: return C

graph. Specifically, we restrict MICA’s coverage requirement for the seed set to
only the OCT set and leverage iMBEA [32] to enumerate the MBs entirely within
G[L ∪R]. This reduces the runtime from O(n3MB) to O(n2nOMB).

OCT-MICA begins by running iMBEA (line 2 in Algorithm 2) to get MB′, the
MBs in G[L ∪ R], in time O(nm′M ′B), where m′ is the number of edges in
G[L∪R] and M ′B = |MB′|. Using MakeMaximal, we convert elements ofMB′ to
be maximal with respect to G (lines 3-4). MakeMaximal runs in O(m) time and
its algorithmic details are deferred to the Appendix. OCT-MICA then initializes its
seed set of size O(nO) consisting of bicliques from the stars of the OCT set (lines
6-8), and adds these to the working set C of all identified MBs (line 9). Similar
to MICA, the remainder of the algorithm builds new bicliques by combining (via
Consensus, see Appendix) pairs of elements from the seed set CO and previously
identified MBs C (lines 11-20), until no new bicliques are generated. This runs
in time O(n2nOMB).

Lemma 3. OCT-MICA returns exactlyMB, the set of maximal bicliques in G.

Proof. Running iMBEA and MakeMaximal ensures all maximal bicliques from
G[L ∪ R] were found and added to C. Thus, we restrict our attention to maxi-
mal bicliques with at least one node from O, and proceed similarly to the proof
of Theorem 3 in [3]. We say that a biclique B1 = X1 × Y1 absorbs a biclique
B2 = X2 × Y2 if X2 ⊆ X1 and Y2 ⊆ Y1 or Y2 ⊆ X1 and X2 ⊆ Y1.



8 Blair D. Sullivan, Andrew van der Poel, and Trey Woodlief

We show that every biclique B∗ = X∗×Y ∗ in G is absorbed by some biclique
in C by induction on k, the number of OCT vertices in B∗. In the base case (k =
0), B∗ is contained in G[L ∪ R] and is absorbed by a biclique in MB′ ⊆ C. We
now consider k ≥ 1; without loss of generality, assume X∗ contains some OCT
vertex v. Then B′ = {v} × Y ∗ is absorbed by some biclique B1 = X1 × Y1, v ∈
X1, Y

∗ ⊆ Y1, where B1 ∈ C0 is formed from the star centered on v. Further,
B′′ = (X∗\{v})×Y ∗ has fewer vertices from OCT than B∗, so by induction it is
absorbed by some biclique B2 = X2×Y2, (X\{v}) ⊆ X2, Y

∗ ⊆ Y2, where B2 ∈ C.
Now B∗ is a consensus of B′ and B′′, and will be absorbed by the corresponding
consensus of B1 and B2, guaranteeing absorption by a biclique in C.

Lemma 4. The runtime of OCT-MICA after iMBEA is O(n2nOMB).

Proof. We begin by noting that MB ≤ 2n, so log(MB) is O(n).
Finding the bicliques in MB′ requires time O(m′nM ′B) for iMBEA (line 2);

making them maximal (lines 3-4) is O(mM ′B). The bicliques generated by the
OCT stars (lines 6-8) can be found in O(mnO). Sorting the initial set C (line 10)
incurs an additional O(M ′B log(M ′B)). Since log(MB) is O(n), the total runtime
for our initialization (lines 2-10) is O(mnM ′B +mnO).

The consensus-building stage of OCT-MICA contains nested loops over C0 (line
14) and C (line 15), which execute at mostO(nO) andO(MB) times, respectively.
The Consensus operation (line 16) executes in O(n), and produces a constant
number of candidate bicliques to check. Each execution of the inner loop incurs
a cost of O(m) for MakeMaximal (line 17) and O(n log(MB)) to insert the new
MB in sorted order (lines 18-20). We note that the runtime of Consensus is
dominated by the cost of the loop. Thus, the total runtime of consensus-building
is O(nOMBn log(MB)), or O(n2nOMB).

This analysis leads to an overall runtime of O(m′nM ′B+n2nOMB), as desired.
We note that for nO ∈ Θ(n), OCT-MICA’s runtime degenerates to the O(n3MB)
of MICA. Additionally, the stronger results for incremental polynomial time de-
scribed for MICA in [3] still apply; the proofs are similar and are omitted for
space. For bipartite graphs (nO = 0), OCT-MICA is effectively iMBEA, which was
empirically shown to be more efficient than MICA on bipartite graphs [32].

4 Implementation

In this section we describe several relevant implementation details and design
decisions.

4.1 Algorithm Framework

We always (re-label and) store vertices as {0, 1, . . . n} and maintain internal
dictionaries as needed to recover original labels – e.g. when taking subgraphs.
This allows us to leverage native data types and structures; vertices are stored
as size t.
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For efficiency in subroutines, we utilize two representations of G. One rep-
resentation is as adjacency lists, stored as sorted vectors (to improve union and
intersection relative to dictionaries or unsorted vectors). This representation is
essential in the performance of Consensus in MICA/ OCT-MICA and MakeInd-

Maximal and AddTo in OCT-MIB or OCT-MIB-II. We also store the graph as a
dictionary of dictionaries which is more amenable to taking subgraphs (as when
finding MISs in OCT-MIB, OCT-MIB-II). Deleting a node requires time O(N(v))
as compared to O(N(v)∆(G)), where ∆(G) is the maximum degree, in the ad-
jacency list representation.

4.2 MICA

The public implementation of MICA used in [32] is available at [13]. However, this
implementation is only suitable for bipartite graphs as it makes certain efficiency
improvements in storage, etc. which assume bipartite input. As such, we imple-
mented MICA from scratch in the same framework as OCT-MIB and OCT-MICA,
etc., using the data structures discussed above. This is incompatible with the
technique described in [3] for storing only one side of each biclique (since in the
non-induced case, maximality completely determines the other side). We note
this could improve efficiency of both MICA and OCT-MICA in a future version of
our software, and should not significantly affect their relative performance as
analyzed in this work.

5 Experiments

5.1 Data and experimental setup

We implemented OCT-MIB-II, Enum-MIB, MICA, and OCT-MICA in C++, and used
the implementation of OCT-MIB from [17]. All code is open source under a BSD
3-clause license and publicly available as part of MI-Bicliques at [11].

Data For convenience, throughout this section, we assume nL ≥ nR and let
nB = nL + nR. Our synthetic data was generated using a modified version of
the random graph generator of Zhang et al. [32] that augments random bipartite
graphs to have OCT sets of known size. The generator allows a user to specify
the sizes of L, R, and O (nL, nR, and nO), the expected edge densities between
L and R, O and L ∪ R, and within O, and the coefficient of variation (cv; the
standard deviation divided by the mean) of the expected number of neighbors
in L over R and in L ∪ R over O. The generator is seeded for replicability.
We use the näıve OCT decomposition [L,R,O] returned by the generator for
our algorithm evaluation, but the techniques mentioned in Section 2 could also
be used to find alternative OCT sets. Unless otherwise specified, the following
default parameters are used: expected edge density d̄ = 5%, cv = 0.5, nB = 1000
and nL/nR = 1/10; additionally, the edge density between O and L ∪ R is the
same as that between L and R.
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Fig. 1: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000, nL/nR = 10, and nO = 10. The expected
edge density between O and L ∪R was varied; all other densities were 0.05.

To add the edges between L and R, the edge density and cv values are used to
assign vertex degrees to R, and then neighbors are selected from L uniformly at
random; this was implemented in the generator of [32]. Edges are added between
O and L∪R via the same process, only with the corresponding edge density and
cv values. Finally, we add edges within O with an Erdős-Rényi process based on
expected density (no cv value is used here).

In most experiments we limit nO to be O(3 log3 nB), and use a timeout of one
hour (3600s). Unless otherwise noted we run each parameter setting with five
seeds and plot the average over these instances, using the time-out value as the
runtime for instances that don’t finish. If not all instances used for a plot point
finished, we annotate it with the number of instances that did not time out.

We began by running our algorithms on the same corpus of graphs as in [17]
(see 5.2). As the new algorithms finished considerably faster than those in [17],
we were able to scale up both nB and nO to create new sets of experiments,
discussed in 5.3. We also ran our algorithms on computational biology graphs
from [29], which have been shown to be near-bipartite; these results are in 5.4.

Hardware All experiments were run on identical hardware; each server had four
Intel Xeon E5-2623 v3 CPUs (3.00GHz) and 64GB DDR4 memory. The servers
ran Fedora 27 with Linux kernel 4.16.7-200.fc27.x86 64. The C/C++ codes were
compiled using gcc/g++ 7.3.1 with optimization flag -O3.

5.2 Initial Benchmarking

We begin by evaluating our algorithms on the corpus of graphs used in [17]. This
dataset was designed to independently test the effect of each parameter (the ex-
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pected densities in various regions of the graph, the cv values, nO, nB , and
nL/nR) on the algorithms’ runtime. We observe that OCT-MIB-II and OCT-MICA

are generally the best algorithms for their respective problems, and include com-
prehensive plots of all experiments in the Appendix.

For Maximal Induced Biclique Enumeration, we observe that in gen-
eral, OCT-MIB-II outperforms OCT-MIB and Enum-MIB. This is the case when the
varying parameter is the density within O, the cv between L and R, the size
of the OCT set nO, and the ratio between L and R, amongst other settings.
In these “near-bipartite” synthetic graphs, Enum-MIB unsurprisingly is slowest
on most instances. When nB = 1000 and nO = 3 log3(nB), Enum-MIB outper-
forms OCT-MIB when the density within O increases above 0.05. This is likely
due to the adverse effect of the number of MISs in the OCT set on OCT-MIB.
The most interesting observation occurs when varying the edge density between
O and L ∪ R (left panel of Figure 1). In the nO = 10 case, OCT-MIB-II is the
fastest algorithm until the density exceeds 0.11, when OCT-MIB becomes faster.
We believe this is likely due to OCT-MIB efficiently pruning away attempted ex-
pansions which are guaranteed to fail, while the number of MISs in O does not
increase. This behavior is also seen in the case where nO = 3 log3 nB , though
the magnitude of the difference is not as extreme.

In the non-induced setting of Maximal Biclique Enumeration, OCT-MICA
consistently outperforms MICA on this corpus, typically by at least an order of
magnitude. The more interesting takeaway is that both MB-enumerating algo-
rithms run considerably faster than their MIB-enumerating counterparts (e.g.
right panel of Figure 1), mostly because the number of MIBs is often one to two
orders of magnitude larger than the number of MBs in these instances.

5.3 Larger Graphs

Given the much faster runtimes achieved in Section 5.2 we created a new corpus
of larger synthetic graphs. For Maximal Induced Biclique Enumeration,
we scaled up nB to 10,000 and varied nO in two settings, increasing the time-
out to 7200 seconds. When the expected density was 0.03 and nL/nR = 100,
OCT-MIB-II outperformed OCT-MIB for all values of nO by at least an order
of magnitude and finished on all instances, whereas OCT-MIB timed out on all
instances with nO ≥ 13 (left panel of Figure 2). However, when the expected
density was 0.01 and nL/nR = 9, OCT-MIB was faster (right panel of Figure 2).
We speculated that this was due to the sparsity of O, allowing for a speed-up
due to the efficient pruning of OCT-MIB similar to what was seen in Section 5.2.
To test this theory, we increased expected edge density within O to 0.05 while
leaving the other parameters the same (right panel of Figure 2), and observed
that once nO ≥ 9, OCT-MIB-II outperforms OCT-MIB, confirming our hypothesis.

For Maximal Biclique Enumeration, we also designed a new experiment
where nB = 10000 and nO was scaled up to 1000 (left panel of Figure 3).
OCT-MICA finished on all instances, whereas MICA finished on none when nO was
1000. We also tested how large we could scale the expected density between L and
R (right panel of Figure 3). When nB = 100, OCT-MICA finished on all instances
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Fig. 2: Runtimes of the OCT-based MIB-enumeration algorithms on graphs
where nB = 10000 and nO varies. In the left panel, nL = 9901, nR = 99
(nL/nR ≈ 100) and the expected edge density is 0.03. In the right panel,
nL = 9091, nR = 909 (nL/nR ≈ 10) and the expected edge density (exclud-
ing within O) is 0.01; the marker-type denotes the expected edge density within
O (see legend). For these larger instances we used 3 seeds and a 7200s timeout.

with density at most 0.4, while MICA finished on two of five when density is
0.4. Neither algorithm finished in less than the timeout of an hour when the
density was 0.5 or greater, exhausting the hardware’s memory in many cases.
Thus OCT-MICA is able to scale to graphs with considerably larger OCT sets and
higher density than both MICA and the MIB-enumerating algorithms.

We additionally created graphs with nO > 3 log3 nB , which was not done
in [17], and ran the algorithms for both MIBs and MBs (Figure 4). These graphs
had nB values up to 4000 and for each value of nB , we used three values of
nO; 10, 3 log3 nB , and

√
nB . The results were most interesting for the MIB-

enumerating algorithms (Figure 4 top). OCT-MIB performed the worst of the
three algorithms when nO =

√
nB , but outperformed Enum-MIB in the other

settings. This verifies the analysis from [17] on the range in which OCT-MIB is
most effective. In general, OCT-MIB-II once again was the fastest algorithm and
did best when nO was smaller. The impact of nO on OCT-MIB-II and Enum-MIB

appeared comparable. In the MB-enumeration case, OCT-MICA consistently out-
performs MICA, and there is a distinguishable difference in the runtime based on
the value of nO (Figure 4 bottom). The value of nO has far less effect on MICA,
which does not finish on any graphs with nB = 4000.

5.4 Computational Biology Data

Finally, we tested performance on real-world data using the graphs from [29],
which come from computational biology. These graphs have previously been ex-
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Fig. 3: Runtimes of the MB-enumerating algorithms on graphs with larger nB
and expected edge density. In the left panel, nL = 9091, nR = 909 (nL/nR ≈ 10),
the expected edge density is 0.05, and nO varied. In the right panel, nL =
91, nR = 9 (nL/nR ≈ 10), nO = 50, and the expected edge density varied.

hibited to have small OCT sets [12], and we used the implementation from [9] of
Hüffner’s iterative compression algorithm [12] to find the OCT decompositions.
Computing the OCT decomposition for each graph ran in less than ten seconds,
and often in less than one second. As can be seen in Table 1, OCT-MIB-II per-
forms the best of the MIB-enumerating algorithms and OCT-MICA is faster than
MICA. Full results are in the Appendix.

G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

aa-24 258 1108 21 3890 2.108 9.140 14.167 1334 0.237 2.477
aa-30 39 71 4 56 0.002 0.007 0.006 36 0.002 0.007
aa-41 296 1620 40 11705 16.519 82.439 50.205 20375 9.059 47.789
aa-50 113 468 18 1272 0.322 0.778 1.098 1074 0.132 0.612
j-20 241 640 1 274 0.013 0.065 0.484 228 0.009 0.188
j-24 142 387 4 150 0.013 0.027 0.089 104 0.007 0.025

Table 1: A sampling of the runtimes of the biclique-enumeration algorithms on
the Wernicke-Hüffner computational biology data [29].

6 Conclusion

We present a suite of new algorithms for enumerating maximal (induced) bi-
cliques in general graphs, two of which are parameterized by the size of an
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Fig. 4: Runtimes of the MIB-enumerating (top) and MB-enumerating (bot-
tom) algorithms on graphs where nL/nR = 9 and all expected edge densi-
ties are 0.05. nB is varied (x-axis) and the marker-type denotes the value of
nO ∈ {10,

√
nB , 3 log3(nB)} (see legend). The time-out value is set to 7200s for

the MIB-enumerating algorithms and 3600s for the MB-enumerating algorithms.

odd cycle transversal. It is particularly noteworthy that the parameterized algo-
rithms empirically outperform the general approaches even when their asymp-
totic worst-case complexities are worse. This highlights a weakness of standard
complexity analysis, as many aspects of an algorithm get “swept under the rug”.

It is also interesting that even though Maximal Induced Biclique Enu-
meration and Maximal Biclique Enumeration are closely related prob-
lems, the MB-enumerating algorithms are often an order of magnitude faster
than their MIB-enumerating counterparts. The reason for this can likely be at-
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tributed to two causes: the number of MBs is significantly less than the number
of MIBs in sparse graphs, and that the stricter structure of MIBs requires more
work to ensure. For S ⊆ V , there is exactly one MB of the form S × T ⊆ V in
G, but there can be many MIBs with this structure.

We implement and benchmark all of the algorithms on a corpus of synthetic
and real-world computational biology graphs, and establish that parameterized
approaches are often at least an order of magnitude faster than the general
approaches. This remains true even when nO ∈ O(

√
n). It would be interesting

to experimentally evaluate as nO increases, at what point the standard methods
outperform those optimized for near-bipartite graphs. Finally, we note as in [17],
the current implementations of the algorithms could be improved by replacing
the MIS-enumeration algorithm with that of [28], and the M(I)B-enumeration
on bipartite graphs with the implementation used in [32].
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A MIB-Enumeration Framework Subroutines

We now provide algorithmic details and proofs of the complexity and correctness
of MakeIndMaximal and AddTo.

A.1 MakeIndMaximal

Recall that MakeIndMaximal takes in (C, S), where C is an induced biclique and
S ⊆ V , and either returns a MIB C+ where C ⊆ C+, C+ ⊆ C ∪ S, C 6= ∅, or
returns ∅. If it returns ∅ and C 6= ∅ then there is another MIB D which contains
C and v ∈ (V \S)\C. We give pseudo-code of MakeIndMaximal in Algorithm 3.

Algorithm 3 MakeIndMaximal

1: Input: G = (V,E), C = C1 × C2, S
2: Let CS = S \ (C1 ∪ C2)
3: if C == ∅ then
4: return ∅
5: for v ∈ CS do
6: if |N(v) ∩ C1| == |C1| & |N(v) ∩ C2| == 0 then
7: C2 = C2 ∪ {v}
8: CS \ {v}
9: for v ∈ CS do

10: if |N(v) ∩ C2| == |C2| & |N(v) ∩ C1| == 0 then
11: C1 = C1 ∪ {v}
12: VS = V \ (S ∪ C1 ∪ C2)
13: for v ∈ VS do
14: if |N(v) ∩ C1| == |C1| & |N(v) ∩ C2| == 0 then
15: return ∅
16: for v ∈ VS do
17: if |N(v) ∩ C2| == |C2| & |N(v) ∩ C1| == 0 then
18: return ∅
19: return C+ = C1 × C2

Lemma 5. MakeIndMaximal returns a MIB C+ where C ⊆ C+, C+ ⊆ C ∪ S,
C 6= ∅, or returns ∅.

Proof. Referring to the pseudo-code in Algorithm 3, it is clear that C ⊆ C+, as
no vertices are ever removed from the input biclique C. Furthermore, the only
vertices added to C+ are from S, so C+ ⊆ C ∪ S and C+ is the only biclique
returned by MakeIndMaximal. Note that neither side of C is empty and the
only vertices added are independent from the side of the biclique which they are
added to, so if we do not return ∅ the object returned is an induced biclique. If
no node from outside of S can be added to C+, then we will not return ∅ and
thus C+ is maximal.
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Lemma 6. If MakeIndMaximal returns ∅ and C 6= ∅ then there is another MIB
D in G which contains C and v ∈ (V \ S) \ C.

Proof. Note that C ⊆ C∗ = C1 × C2 at line 12. As MakeIndMaximal returns ∅
there must be a vertex v ∈ VS = V \ (S ∪C∗) which can be added to C∗. Let D
be a MIB containing C∗ and v, thus D suffices to prove the lemma.

Lemma 7. MakeIndMaximal runs in O(m) time.

Proof. Note that because G is connected, n ∈ O(m). Setting CS and VS can be
done in O(n) time. In each for loop, we can scan all of the edges incident to each
v in the iterated-over set and keep count of how many nodes from Ci have been
seen (checking for inclusion can be done in O(1) time with an O(n) initialization
step). Thus, each edge is scanned at most once per for loop.

A.2 AddTo

Recall that AddTo takes in (C, v) where C = C1 ×C2 is an induced biclique and
v ∈ V \ (C1 ∪ C2), and returns the induced biclique where v is added to C1,
N(v) is removed from C1, and N(v) is removed from C2 if C2 \N(v) 6= ∅ and ∅
otherwise. We give pseudo-code of AddTo in Algorithm 4.

Algorithm 4 AddTo

1: Input: G = (V,E), C = C1 × C2, v ∈ V \ (C1 ∪ C2)
2: C ′1 = (C1 ∪ {v}) \N(v)
3: C ′2 = C2 ∩N(v)
4: if C ′2 == ∅ then
5: return ∅
6: return C ′1 × C ′2

Lemma 8. AddTo returns the induced biclique where v is added to C1, N(v)
is removed from C1, and N(v) is removed from C2 if C2 \ N(v) 6= ∅, and ∅
otherwise.

Proof. Referring to the pseudo-code in Algorithm 4, it is clear that v is added to
C1 and N(v) is removed from C1. Additionally v’s non-neighbors are effectively
removed from C2 by intersecting it with N(v). If C ′2 = ∅ then C2 \ N(v) = ∅
and ∅ is returned. Otherwise C ′1 6= ∅ since it includes v and thus C ′1 × C ′2 is a
biclique. C ′1 × C ′2 must be an induced biclique as C ′2 ⊆ C2, C ′1 \ {v} ⊆ C1, and
C1 × C2 is an induced biclique and (N(v) ∩ C ′1) = ∅ by definition.

Lemma 9. AddTo runs in O(m) time.

Proof. Note that because G is connected, n ∈ O(m). AddTo can be completed by
scanning all of v’s O(m) incident edges in tandem with an O(n) preprocessing
step to allow for constant-time look-ups when checking for inclusion in a set.
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B MB-Enumeration Framework Subroutines

We give a detailed description of the MakeMaximal and Consensus subroutines
used in OCT-MICA, along with arguments of their correctness and complexity.

B.1 MakeMaximal

Extending a biclique to be maximal is different in the non-induced case from the
induced case, since MBs are completely characterized by one side of the biclique.

Algorithm 5 MakeMaximal

1: Input: G = (V,E), B = X × Y
2: X∗ = ∩i∈YN(i)
3: Y ∗ = ∩i∈X∗N(i)
4: return B∗ = X∗ × Y ∗

Lemma 10. MakeMaximal runs in O(m) time.

Proof. In order to form X∗, we can scan the edges incident to each v ∈ Y and
keep count of how many nodes from X∗ have been seen (checking for inclusion
can be done in O(1) time with an O(n) initialization step). The same can be
done for Y ∗, where instead we scan the edges incident to each v ∈ X∗. Thus,
each edge is scanned at most twice in MakeMaximal.

B.2 Consensus

The MICA section of OCT-MICA relies heavily on the Consensus operation intro-
duced in [3] for finding new candidate bicliques. For each pair of bicliques, there
are four candidate bicliques which form the consensus of the pair. Note that any
of the four candidates may be empty and if so discarded. Consensus runs in
O(n) time using standard techniques for set union and intersection.

C Additional Enumeration Experiments

Here we include figures corresponding to additional experimental results of our
initial benchmarking and on the computation biology data from [29] described
in sections 5.2 and 5.4 respectively.
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Algorithm 6 Consensus

1: Input: G = (V,E), Bα = Xα × Yα, Bβ = Xβ × Yβ
2: B1 = (Xα ∪Xβ)× (Yα ∩ Yβ)
3: B2 = (Xα ∩Xβ)× (Yα ∪ Yβ)
4: B3 = (Yα ∪Xβ)× (Xα ∩ Yβ)
5: B4 = (Xα ∩ Yβ)× (Yα ∪Xβ)
6: S = {}
7: for Bi = Xi × Yi ∈ {B1, B2, B3, B4} do
8: if |Xi| > 0 & |Yi| > 0 then
9: S.add(Bi)

10: return S
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Fig. 5: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 10. The ratio nL/nR was
varied.
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Fig. 6: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 200 and nO = 10. The ratio nL/nR was
varied.
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Fig. 7: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The ratio
nL/nR was varied.
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Fig. 8: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 200 and nO = 14 ≈ 3 log3(nB). The ratio
nL/nR was varied.
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Fig. 9: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 10. The coefficient of variation
between L and R was varied.
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Fig. 10: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 200 and nO = 10. The coefficient of variation
between L and R was varied.
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Fig. 11: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The coeffi-
cient of variation between L and R was varied.
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Fig. 12: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 200 and nO = 14 ≈ 3 log3(nB). The coefficient
of variation between L and R was varied.
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Fig. 13: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO was varied.
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Fig. 14: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The expected
edge density between O and {L,R} was varied.
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Fig. 15: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 10. The expected edge density
within O was varied.
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Fig. 16: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The expected
edge density within O was varied.
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Fig. 17: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 150, nL = nR and nO = 5. The expected edge
density in the graph was varied except for the expected edge density within O
which was fixed to 0.05.
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Fig. 18: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 150, nL = nR and nO = 5. The expected edge
density in the graph was varied, including the expected edge density within O.
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Fig. 19: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 200, nL = nR and nO = 5. The expected edge
density in the graph was varied except for the expected edge density within O
which was fixed to 0.05.
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Fig. 20: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 200, nL = nR and nO = 5. The expected edge
density in the graph was varied, including the expected edge density within O.
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Fig. 21: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 300, nL = nR and nO = 5. The expected edge
density in the graph was varied except for the expected edge density within O
which was fixed to 0.05.
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Fig. 22: Runtimes of the MIB-enumerating (left) and MB-enumerating (right)
algorithms on graphs where nB = 300, nL = nR and nO = 5. The expected edge
density in the graph was varied, including the expected edge density within O.
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G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

aa-10 69 191 6 178 0.008 0.023 0.057 98 0.007 0.031
aa-11 102 307 11 424 0.055 0.115 0.259 206 0.018 0.120
aa-13 129 383 12 523 0.083 0.239 0.470 269 0.028 0.166
aa-14 125 525 19 1460 0.366 0.902 1.254 605 0.090 0.485
aa-15 66 179 7 206 0.010 0.019 0.053 113 0.011 0.030
aa-16 13 15 0 15 0.000 0.000 0.000 8 0.000 0.000
aa-17 151 633 25 2252 1.023 2.132 3.457 1250 0.242 1.137
aa-18 87 381 14 660 0.100 0.173 0.389 823 0.090 0.351
aa-19 191 645 19 1262 0.449 1.569 2.385 519 0.069 0.450
aa-20 224 766 19 1607 0.705 2.431 3.809 949 0.154 1.061
aa-21 28 90 9 116 0.006 0.013 0.008 213 0.019 0.030
aa-22 167 641 16 1520 0.423 1.387 2.629 560 0.074 0.638
aa-23 139 508 18 1766 0.435 0.788 1.651 1530 0.210 1.000
aa-24 258 1108 21 3890 2.108 9.140 14.167 1334 0.237 2.477
aa-25 14 15 1 10 0.000 0.001 0.001 10 0.000 0.000
aa-26 92 284 13 583 0.084 0.186 0.309 370 0.030 0.128
aa-27 118 331 11 458 0.054 0.270 0.343 229 0.015 0.114
aa-28 167 854 27 2606 1.464 2.201 4.162 2814 0.755 3.250
aa-29 276 1058 21 3122 1.909 8.418 10.707 1924 0.382 3.344
aa-30 39 71 4 56 0.002 0.007 0.006 36 0.002 0.007
aa-31 30 51 2 37 0.002 0.002 0.002 22 0.001 0.002
aa-32 143 750 30 4167 2.286 7.694 5.290 3154 0.684 2.635
aa-33 193 493 4 578 0.046 0.204 0.993 218 0.012 0.218
aa-34 133 451 13 705 0.132 0.316 0.756 275 0.031 0.226
aa-35 82 269 10 459 0.037 0.108 0.178 215 0.019 0.081
aa-36 111 316 7 248 0.015 0.076 0.155 143 0.011 0.078
aa-37 72 170 5 135 0.005 0.018 0.054 82 0.005 0.022
aa-38 171 862 26 4270 2.428 5.223 7.586 4964 1.136 5.179
aa-39 144 692 23 2153 0.872 1.574 3.034 1177 0.237 1.009
aa-40 136 620 22 2727 1.022 2.086 2.973 1911 0.301 1.324
aa-41 296 1620 40 11705 16.519 82.439 50.205 20375 9.059 47.789
aa-42 236 1110 30 6967 5.646 45.560 21.244 8952 2.428 13.479
aa-43 63 308 18 905 0.137 0.294 0.311 875 0.116 0.302
aa-44 59 163 10 211 0.014 0.024 0.051 158 0.008 0.037
aa-45 80 386 20 1768 0.336 0.775 0.859 1716 0.244 0.796
aa-46 161 529 13 719 0.157 0.438 0.922 374 0.036 0.257
aa-47 62 229 14 572 0.057 0.082 0.138 451 0.051 0.127
aa-48 89 343 17 896 0.144 0.338 0.497 519 0.060 0.230
aa-49 26 62 5 50 0.004 0.002 0.003 74 0.006 0.013
aa-50 113 468 18 1272 0.322 0.778 1.098 1074 0.132 0.612
aa-51 78 274 11 429 0.035 0.082 0.174 250 0.020 0.078
aa-52 65 231 14 690 0.073 0.135 0.200 431 0.040 0.122
aa-53 88 232 12 340 0.036 0.186 0.162 199 0.011 0.052
aa-54 89 233 12 286 0.027 0.063 0.113 177 0.015 0.039

Table 2: The runtimes (rounded to nearest thousandth-of-a-second) of the
biclique-enumeration algorithms on the Afro-American subset of the Wernicke-
Hüffner computational biology data [29].
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G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

j-10 55 117 3 52 0.002 0.009 0.010 39 0.001 0.010
j-11 51 212 5 63 0.003 0.014 0.011 36 0.003 0.012
j-13 78 210 6 224 0.015 0.028 0.074 90 0.009 0.032
j-14 60 107 4 44 0.004 0.007 0.003 38 0.003 0.003
j-15 44 55 1 13 0.001 0.000 0.004 10 0.001 0.000
j-16 9 10 0 10 0.000 0.000 0.000 3 0.000 0.000
j-17 79 322 10 317 0.025 0.051 0.127 126 0.014 0.056
j-18 71 296 9 154 0.011 0.038 0.053 91 0.012 0.028
j-19 84 172 3 105 0.002 0.010 0.019 46 0.002 0.013
j-20 241 640 1 274 0.013 0.065 0.484 228 0.009 0.188
j-21 33 102 9 107 0.006 0.012 0.008 197 0.017 0.024
j-22 75 391 9 221 0.020 0.051 0.080 113 0.009 0.048
j-23 76 369 19 682 0.095 0.404 0.217 459 0.057 0.132
j-24 142 387 4 150 0.013 0.027 0.089 104 0.007 0.025
j-25 14 14 0 14 0.000 0.000 0.000 3 0.000 0.000
j-26 63 156 6 156 0.007 0.019 0.035 67 0.003 0.013
j-28 90 567 13 492 0.073 0.130 0.244 416 0.044 0.193

Table 3: The runtimes (rounded to nearest thousandth-of-a-second) of the
biclique-enumeration algorithms on the Japanese subset of the Wernicke-Hüffner
computational biology data [29].
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