Skip to main content

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree Problem

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11544))

Included in the following conference series:

  • 660 Accesses

Abstract

Uncertainty in optimization can be modeled with the concept of scenarios, each of which corresponds to possible values for each parameter of the problem. The min-max regret criterion aims at obtaining a solution minimizing the maximum deviation, over all possible scenarios, from the optimal value of each scenario. Well-known problems, such as the shortest path problem and the minimum spanning tree, become NP-hard under a min-max regret criterion. This work reports the development of a branch and bound approach to solve the Minimum Spanning Tree problem under a min-max regret criterion in the discrete scenario case. The approach is tested in a wide range of test instances and compared with a generic pseudo-polynomial algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginac C++ libraries. https://www.ginac.de/

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 862–873. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_76

    Chapter  Google Scholar 

  3. Aissi, H., Bazgan, C., Vanderpooten, D.: Pseudo-polynomial time algorithms for min-max and min-max regret problems. In: Proceedings of the 5th International Symposium on Operations Research and Its Applications, pp. 171–178 (2005)

    Google Scholar 

  4. Barahona, J.F., Pulleyblank, R.: Exact arborescences, matching and cycles. Discrete Appl. Math. 16, 91–99 (1987)

    Article  MathSciNet  Google Scholar 

  5. Chassein, A., Goerigk, M.: On the recoverable robust traveling salesman problem. Optim. Lett. 10(7), 1479–1492 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ehrgott, M.: Muticriteria Optimization, 2nd edn. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27659-9

    Book  Google Scholar 

  7. Figueira, J.R., Paquete, L., Simões, M., Vanderpooten, D.: Algorithmic improvements on dynamic programming for the bi-objective \(\{0,1\}\) knapsack problem. Comput. Optim. Appl. 56(1), 97–111 (2013)

    Article  MathSciNet  Google Scholar 

  8. Harold, N.G., Myers, E.W.: Finding all spanning trees of directed and undirected graphs. SIAM J. Comput. 7(3), 280–287 (1978)

    Article  MathSciNet  Google Scholar 

  9. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1–2), 67–100 (2000)

    Article  MathSciNet  Google Scholar 

  10. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  11. Makuchowski, M.: Perturbation algorithm for a minimax regret minimum spanning tree problem. Oper. Res. Decis. 24(1), 37–49 (2014)

    MathSciNet  Google Scholar 

  12. Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the robust spanning tree problem with interval data. Eur. J. Oper. Res. 161(3), 771–779 (2005)

    Article  MathSciNet  Google Scholar 

  13. Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algorithm for the robust shortest path problem with interval data. Oper. Res. Lett. 32(3), 225–232 (2004)

    Article  MathSciNet  Google Scholar 

  14. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386 (2010)

    Article  MathSciNet  Google Scholar 

  15. Serafini, P.: Some considerations about computational complexity for multi objective combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization. LNEMS, vol. 294, pp. 222–232. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-46618-2_15

    Chapter  Google Scholar 

  16. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)

    Article  MathSciNet  Google Scholar 

  17. Yaman, H., Karasan, O.E., Pinar, M.Ç.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29, 31–40 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was carried out in the scope of the MobiWise project: From mobile sensing to mobility advising (P2020 SAICTPAC/0011/2015), co-financed by COMPETE 2020, Portugal 2020 - POCI, European Union’s ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Godinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Godinho, N., Paquete, L. (2019). A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree Problem. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics