Skip to main content

Algebraic-Trigonometric Nonlinear Analytical Inverse Kinematic Modeling and Simulation for Robotic Manipulator Arm Motion Control

  • Conference paper
Advances in Visual Informatics (IVIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11870))

Included in the following conference series:

  • 1663 Accesses

Abstract

Robotic manipulator arm has to endure certain challenges of actual applications that regularly affect its motion behavior incorporating end-effector positional accuracy and repeatability, degree-of-freedom constraint, redundant movement, heavy payload uplifting, long reach stretching, and other complications. This study works on finding inverse kinematic (IK) solutions to facilitate the robotic arm motion control with algebraic-trigonometric nonlinear analytical models. The nonlinear analytical models acquired from the extensive manipulation of trigonometric rules, specifically sum-and-difference and Pythagorean identities and algebraic arithmetic in pursuit of determining the reachable actuating joint configurations are experimented for applicability on the fundamental structure of two-segmented manipulator arm. For verification, the precision of the IK solutions yielded by the models are cross-referenced with the manipulator’s direct kinematics and tested with the statistical performance measure of minimum squared error while tracking cubic Hermite spline, cubic Bezier, and cubic B-spline curves. For validation, an interactive spreadsheet-based IK application utilizing built-in front-end capabilities including Visual Basic for Applications, Math and Trig Function Library, Name Manager, Data Validation, ActiveX Controls, and Charts is developed to accommodate these models and simulate the feasible joint angles and orientations of robot arm. The application visualizes (1) the robotic linkage motion on xz plane according to the links lengths, end-effector position, and base position specified and (2) the robotic curves trajectory tracking of cubic Hermite spline, cubic Bezier, and cubic B-spline. The algebraic-trigonometric nonlinear analytical models proposed provide alternative practical IK solutions for the two-segmented robotic manipulator arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haughey, B.: Simulation and optimization of a two degree of freedom, planar, parallel manipulator. Unpublished Ph. D. thesis. Victoria University of Wellington, Wellington (2011)

    Google Scholar 

  2. Groover, M.P.: Automation, Production Systems and Computer-Integrated Manufacturing. Pearson Higher Education, Boston (2015)

    Google Scholar 

  3. Prasanna, K.S., Kar, S.: On the algebraic modeling of planar robots. Ann. - Comput. Sci. Ser. 9(2), 131–142 (2011)

    Google Scholar 

  4. Niku, S.B.: Introduction to Robotics – Analysis, Control, Applications. Wiley, Hoboken (2011)

    Google Scholar 

  5. Ben-Gharbia, K.M., Roberts, R.G., Maciejewski, A.A.: Examples of planar robot kinematic designs from optimally fault-tolerant Jacobians. In: ICRA: Proceedings of the 2011 IEEE International on Robotics and Automation, pp. 4710–4715, Shanghai (2011)

    Google Scholar 

  6. Sivčev, S., Coleman, J., Omerdić, E., Dooly, G., Toal, D.: Underwater manipulators – a review. Ocean Eng. 163, 431–450 (2018)

    Article  Google Scholar 

  7. Ollero, A.: Aerial robotic manipulators. In: Ang, M.H., Khatib, O., Siciliano, B. (eds.) Encyclopedia of Robotics, pp. 1–8. Springer, Berlin (2019)

    Google Scholar 

  8. Kucuk, S., Bingul, Z.: Robot kinematics: forward and inverse kinematics. In: Cubero, S. (ed.) Industrial Robotics - Theory, Modelling and Control - Advanced Robotic Systems, pp. 117–148. InTech, Rijeka (2007)

    Google Scholar 

  9. Jha, P.: Novel artificial neural network application for prediction of inverse kinematics of manipulator. Unpublished Master thesis. National Institute of Technology, Rourkela, India (2009)

    Google Scholar 

  10. Rocha, C.R., Tonetto, C.P., Dias, A.: A comparison between the Denavit-Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators. Robot. Comput.-Integr. Manuf. 27(4), 723–728 (2011)

    Article  Google Scholar 

  11. Manigpan, S., Kiattisin, S., Leelasantitham, A.: A simulation of 6R industrial articulated robot arm using backpropagation neural network. In: ICCAS: Proceedings of the 2010 International Conference on Control Automation and Systems, pp. 823–826, Gyeonggi-do (2010)

    Google Scholar 

  12. Nagata, F., Yoshitake, S., Otsuka, A., Watanabe, K., Habib, M.K.: Development of CAM system based on industrial robotic servo controller without using robot language. Robot. Comput.- Integr. Manuf. 29(2), 454–462 (2013)

    Article  Google Scholar 

  13. Köker, R.: A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Inf. Sci. 222, 528–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kucuk, S., Bingul, Z.: Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl. Math. Model. 38(7–8), 1983–1999 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abdullah, K.A., Raja Lope Ahmad, R.M.T., Widyarto, S., Yusof, Z., Sulaiman, R.: Integrated nonlinear-linear analytical models based on trigonometric and Cramer’s rules for computing inverse kinematics of robot arm. In: Proceedings of the 4th International Conference on Robotic Automation System (ICORAS 2019), pp. 92–98. Terengganu (2019)

    Google Scholar 

  16. Wen, X., Sheng, D., Huang, J.: A hybrid particle swarm optimization for manipulator inverse kinematics control. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 784–791. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87442-3_96

    Chapter  Google Scholar 

  17. Rokbani, N., Alimi, A.M.: Inverse kinematics using particle swarm optimization – a statistical analysis. In: Sreekumar, M. et al. (eds.) Procedia Engineering – Proceedings of the International Conference on Design and Manufacturing (IConDM 2013), pp. 1602–1611. Elsevier, Amsterdam (2013)

    Google Scholar 

  18. Asadi-Eydivand, M., Ebadzadeh, M.M., Solati-Hashjin, M., Darlot, C., Abu Osman, N.A.: Cerebellum-inspired neural network solution of the inverse kinematics problem. Biol. Cybern. 109(6), 561–574 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pham, D.T., Fahmy, A.A., Eldukhri, E.E.: Adaptive fuzzy neural network for inverse modeling of robot manipulators. In: Proceedings of the 17th International Federation of Automatic Control World Congress, pp. 5308–5313, Seoul (2008)

    Google Scholar 

  20. Manseur, R.: Robot Modeling and Kinematics. Da Vinci Engineering Press, Boston (2006)

    Google Scholar 

  21. Dutra, M.S., Salcedo, I.L., Diaz, L.M.P.: New technique for inverse kinematics problem using simulated annealing. In: Proceedings of the International Conference on Engineering Optimization, Rio de Janeiro (2008)

    Google Scholar 

  22. Cheraghpour, F., Vaezi, M., Jazeh, H.E.S., Moosavian, S.A.A.: Dynamic modeling and kinematic simulation of Staubli© TX40 robot using MATLAB/ADAMS co-simulation. In: Proceedings of the 2011 IEEE International Conference on Mechatronics, pp. 386–391, Istanbul (2011)

    Google Scholar 

  23. Hasan, A.T., Al-Assadi, H.M.A.A., Mat Isa, A.A.: Neural networks’ based inverse kinematics solution for serial robot manipulators passing through singularities. In: Suzuki, K. (ed.) Artificial Neural Networks - Industrial and Control Engineering Applications, pp. 459–478. InTech, Rijeka (2011)

    Google Scholar 

  24. Abdullah, K.A., Yusof, Z., Sulaiman, R.: Spreadsheet-based neural networks modelling and simulation for training and predicting inverse kinematics of robot arm. Int. J. Comput. Aided Eng. Technol. 10(3), 218–243 (2018)

    Article  Google Scholar 

  25. Shen, W., Gu, J., Ma, Y.: 3D kinematic solution for PA10-7C robot arm based on VRML. In: Proceedings of the 2007 IEEE International Conference on Automation and Logistics, pp. 614–619, Jinan (2007)

    Google Scholar 

  26. Gouasmi, M., Ouali, M., Fernini, B., Meghatria, M.: Kinematic modelling and simulation of a 2-r robot using solidworks and verification by MATLAB/Simulink. Int. J. Adv. Robot. Syst. 9(6), 1–13 (2012)

    Article  Google Scholar 

  27. Morell, A., Tarokh, M., Acosta, L.: Inverse kinematics solutions for serial robots using support vector regression. In: ICRA - Proceedings of the 2013 International Conference on Robotics and Automation, pp. 4188–4193, Karlsruhe (2013)

    Google Scholar 

  28. Momani, S., Abo-Hammour, Z.S., Alsmadi, O.M.K.: Solution of inverse kinematics problem using genetic algorithms. Appl. Math. Inf. Sci. 10(1), 1–9 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research is supported by Geran Penyelidikan Negeri Selangor (GPNS), GPNS-01/UNISEL/18-022. The authors are grateful to Selangor State Government for the approved fund which makes this important research beneficial and viable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul Annuar Abdullah .

Editor information

Editors and Affiliations

Appendix

Appendix

See Fig. 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Abdullah, K.A., Marjudi, S., Yusof, Z., Sulaiman, R. (2019). Algebraic-Trigonometric Nonlinear Analytical Inverse Kinematic Modeling and Simulation for Robotic Manipulator Arm Motion Control. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2019. Lecture Notes in Computer Science(), vol 11870. Springer, Cham. https://doi.org/10.1007/978-3-030-34032-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34032-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34031-5

  • Online ISBN: 978-3-030-34032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics