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Attention to Head Locations for Crowd Counting
Youmei Zhang, Chunluan Zhou, Faliang Chang, and Alex C. Kot, Fellow Member, IEEE

Abstract—Occlusions, complex backgrounds, scale variations
and non-uniform distributions present great challenges for crowd
counting in practical applications. In this paper, we propose a
novel method using an attention model to exploit head locations
which are the most important cue for crowd counting. The
attention model estimates a probability map in which high
probabilities indicate locations where heads are likely to be
present. The estimated probability map is used to suppress non-
head regions in feature maps from several multi-scale feature
extraction branches of a convolutional neural network for crowd
density estimation, which makes our method robust to complex
backgrounds, scale variations and non-uniform distributions. In
addition, we introduce a relative deviation loss to compensate
a commonly used training loss, Euclidean distance, to improve
the accuracy of sparse crowd density estimation. Experiments
on ShanghaiTech, UCF CC 50 and WorldExpo’10 datasets
demonstrate the effectiveness of our method.

Index Terms—Crowd Counting, Convolutional Neural Net-
work, Head Locations, Attention Model, Relative Deviation Loss.

I. INTRODUCTION

W ITH increasing demands for intelligent video surveil-
lance, public safety and urban planning, improving

scene analysis technologies becomes pressing [1], [2]. As an
important task of scene analysis, crowd counting has gained
more and more attention from multimedia and computer vision
communities in recent years for its applications such as crowd
control, traffic monitoring and public safety. However, the
crowd counting task comes with many challenges such as oc-
clusions, complex backgrounds, non-uniform distributions and
variations in scale and perspective [3], as Fig. 1 shows. Many
algorithms have been proposed to address these challenges and
increase the accuracy of crowd counting [4]–[7].

Recent methods based on convolutional neural networks
(CNNs) have achieved a significant improvement in crowd
counting [3]. A multi-column CNN (MCNN) is proposed in
[5] to address the scale-variation problem by using several
CNN branches with different receptive fields to extract multi-
scale features. A cascaded CNN [6] learns high-level prior
which is incorporated into the crowd density estimation branch
of the CNN to boost the performance. In [7], both global and
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Fig. 1. Challenges for crowd counting.

local context are exploited to generate high-quality crowd den-
sity maps. Despite these methods have achieved promising per-
formance, they neglect two aspects which could be exploited to
further improve the accuracy of crowd counting. Firstly, these
methods do not well exploited head locations in images which
are the most important cue for crowd counting. Actually, head
locations are usually used to generate ground-truth density
maps in crowd counting datasets, e.g. ShanghaiTech [4] and
UCF CC 50 [8] datasets. Although the generated ground-
truth density maps from head locations are used to learn a
CNN for regression, these methods do not explicitly give
more attention to head regions during training and testing. In
other words, they treat head and background regions equally.
Secondly, the network training in these methods are dominated
by dense crowd examples because of the use of the Euclidean
distance between ground-truth and estimated density maps
as the training loss. Generally, it is much more difficult to
predict density maps for dense crowd examples than for spare
crowd examples, leading to far larger training loss for the
former. As a result, sparse crowd examples tend to receive
insufficient treatment during training. However, sparse crowd
counting could also be very important for some specific
applications. For instance, in markets and street advertising
scenarios, people may be attracted by some commodities and
stroll in front of them, thus forming some sparse crowds.
Counting the number of people in these scenarios to obtain
the distributions of crowds could provide useful information
regarding the preferences of customers for businesses and
advertisers.

In this paper, we propose a novel method to address
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the above-mentioned two limitations of existing CNN based
approaches. Fig. 2 shows the network architecture used in the
proposed method. We incorporate an attention model into the
MCNN [5] to guide the network to focus on head locations
during training and testing. Specifically, the attention model
learns a probability map in which high probabilities indicate
locations where heads are likely to be present. This probability
map is used to suppress non-head regions in feature maps
from multi-scale feature extraction branches of the MCNN.
In addition, to obtain better density maps for sparse crowds,
we also introduces a relative deviation loss which is combined
with the commonly used Euclidean loss to train the network
of our method. The relative deviation loss increases the impor-
tance of sparse crowd examples during training such that the
network is learned to better predict density maps for sparse
crowd examples. We validate the effectiveness of the proposed
method on three datasets, ShanghaiTech [5], UCF CC 50 [8]
and WorldExpo’10 [4].

The main contributions of this work are summarized as
follows:
1) To our best knowledge, we make the first attempt to use an

attention model for crowd counting. By incorporating the
attention model into the CNN, the proposed method can
filter most of background regions and body parts, therefore
improving its robustness to complex backgrounds and non-
uniform distributions.

2) The proposed method is robust to variations in scale be-
cause of the use of multi-scale feature extraction branches
and the capability of the attention model to locate heads
of different sizes.

3) The relative deviation loss is introduced to compensate
the Euclidean loss, therefore improving the accuracy of
predicting density maps for sparse crowd examples.

The remainder of the paper is organized as follows. Section
II presents some related works about crowd counting and the
attention model. In Section III, our proposed attention model
convolutional neural network (AM-CNN) is introduced. The
implementation details are presented in Section IV. Experi-
mental results are given and discussed in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

Traditional counting methods: Traditional counting meth-
ods can be categorized into detection-based approaches,
regression-based approaches and density estimation-based ap-
proaches [3]. Detection-based approaches typically estimate
the number of people based on detecting objects in the scene
with a sliding window [9]. The object detector is usually a
classifier which trained on features such as histogram oriented
gradients [10] and Haar wavelets [11]. Despite the great
success in sparse crowd counting, these methods do not work
well when it comes to dense crowds. Although [12] presents
a part-based detection method to cater to this problem, the
counting results still remain unsatisfactory.

To overcome the defect of detection-based approaches for
dense crowd counting, some researchers [13]–[15] attempt to
estimate the number of people by regression. Regression-based

approaches aim to find a mapping function between extracted
features and the global or local counts. Typically, global or
local features extracted from the image are firstly used to
encode some low-level information. Then the mapping be-
tween these features and the counts are learned by a regression
model. To utilize more information to get higher accuracy for
dense crowd examples, Idress et al. [8] combined multiple
sources such as low confidence head detections and repetition
of texture elements to count at patch level and then used
enforced smoothness constraint to produce better estimates at
image level. Besides, they created a new dataset on a scale
that was never tackled before.

For some specific occasions, such as markets, it is more
important to estimate the crowd distribution rather than only
getting the number of customers. Therefore, getting the density
maps while predicting the counts is of great significance.
Counting approach in [16] predicts the density maps based on
linear function and introduces a new loss (Maximum Excess
SubArray, MESA) to increase the counting accuracy. Pham
et al. [17] propose to use non-linear function to learn the
mapping. Besides, they exploit a crowdedness prior and train
two different forests to address large variations in appearance.

CNN-based counting methods: CNN-based counting ap-
proaches have become the main tend for its great success
in various computer vision tasks. Early CNN-based methods
[18]–[20] predict the number of objects instead of density
map. Hu et al. [18] exploit a density level classification
task to enrich the features, therefore increasing the counting
accuracy. Similarly, method in [19] classifies the appearance
of the crowds while estimating the counts, which forms
auxiliary CNN for crowd counting. Authors of [20] address
the appearance change problem by multiplying appearance-
weights output by a gating CNN to a mixture of expert
CNNs. As aforementioned, estimating the crowd distribution
while getting the counts is more applicable in some specific
scenarios. Therefore, some researchers attempt to get the
counts by density map prediction based on CNN architectures.

Zhang et al. make their first attempt to address the challenge
of complex backgrounds by utilizing CNN to estimate the
density map, which also denotes the counts by the sum of pixel
values. To make use of both high-level semantic information
and low-level features, Boominathan et al. [21] makes a com-
bination of deep and shallow, fully convolutional network to
estimate the density maps. Some algorithms [5], [22]–[24] are
proposed to cater to large variations in scale and perspective.
The MCNN [5] presents several CNN branches with different
receptive fields, which could extract multi-scale features and
enhance the robustness to large variations in people/head size.
The Hydra CNN in [23] provides a scale-aware solution to
generate the density maps by training the regressor with a
pyramid of image patches at multiple scales. To make full
use of sharing computations and contextual information, local
and global information are leveraged in [22] by learning the
counts of both local regions and overall image. Authors of [24]
propose a switching-CNN by adding a switch to the MCNN
[5]. They utilize an improved version of VGG-16 as the switch
classifier to choose a best CNN regressor for the original
image. Sindagi et al. [7] aims at generating high quality density
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maps by using a Fusion CNN to concatenate features extracted
by Global Context Estimator (GCE), Local Context Estimator
(LCE) and Density Map Estimator (DME). In addition, their
counting architecture is trained in a Generative Adversarial
Network to get shaper density maps.

Attention Model: The attention model has been widely
used for varies computer vision tasks, such as image clas-
sification [25] and segmentation [26], object detection [27]
and classification [28], action recognition [29], [30], pose
estimation [31], scene labeling [32] and video captioning
[33]. Xiao et al. [25] propose a two-level attention for image
classification: object-level attention and part-level attention.
The former selects the patches relevant to the task domain
while the latter focuses on local discriminate patterns. The
two level attentions compensate each other nicely with late
fusion. Chen et al. [26] exploit the attention model to measure
the importance of different-scale features after generating
multi-resolution inputs for semantic segmentation. In [29], a
Content Attention Network (CANet) for action recognition is
proposed to improve the robustness to the irrelevant content by
addressing the attention mechanism and using clean videos as
the guidance for training. Liu et al. [30] proposed a Global
Context-Aware long short-term memory (GCA-LSTM) net-
work, which introduces a recurrent attention model to LSTM
and thus selectively focusing on the informative joints with
regarding to global context information. Apart from context-
aware attention, Chu et al. [31] incorporate multi-resolution at-
tention and hierarchical attention into an hourglass network for
pose estimation. Their model can focus on different granularity
from local salient regions to global semantic-consistent spaces.
A contextual attention model is utilized in [32] to assign differ-
ent power weights to surrounding patches, and thus adaptively
selecting relevant patches for scene labeling. In [33], Gao et
al. integrate LSTM with an attention mechanism that uses the
dynamic weighted sum of local two-dimensional convolutional
neural network representations to capture salient structures of
video, thus generating sentences with rich semantic content
for video captioning. All of these works have demonstrated
that the attention model allows the network to focus on most
relevant features as needed.

III. THE PROPOSED METHOD

The proposed AM-CNN consists of 3 shallow CNN
branches and an attention model. The CNN branches with
different receptive fields are firstly exploited to extract multi-
scale features. Then the attention model is incorporated to
emphasize head locations regardless of the complexity of
scenes, the non-uniformity of distributions and the variability
of scale and perspective. In addition, a relative deviation loss is
used to compensate Euclidean loss during the training process.
The architecture of the proposed AM-CNN is illustrated in Fig.
2 and discussed in detail as follows.

A. Feature Extraction with multi-receptive fields

Some of previous works [5], [7], [23], [24] exploited multi-
column networks with different receptive fields to address
the variations in scale since different sizes of receptive fields

Fig. 2. Architecture of the AM-CNN. The image is firstly fed into three
shallow CNN branches to extract multi-scale features. These branches are with
different sizes of filters, which can be represented as large (9-7-7-7), medium
(7-5-5-5) and small (5-3-3-3). Then the feature maps from different branches
are concatenated to generate attention features by the attention model. Since
containing 2 max pooling layers in each CNN branches, this architecture
finally outputs a density map with 1/4 size of the original image.

can cope with the diversity in object-size [27]. Inspired by
successful use of the MCNN [5], [7], [24], we select part of it
to extract multi-scale features. The multi-column architecture
with larger filter sizes or more columns may cater to larger
variations in scale, but it brings a time-consuming parameter
adjustment task. Since the proposed method mainly focuses
on the effect of the attention model for crowd counting, we
use the same filter sizes and channels as [5] and [24]. But
different from them, the multi-column network in this paper
is used to generate high-dimensional feature maps rather than
transforming the input into a density map directly.

Density maps generated by the MCNN [5] contain complex
backgrounds, which impact the counting accuracy seriously.
In addition, the distinction between large and small objects
is not so obvious in density map, as Fig. 3 shows. The most
important cue for crowd counting, head locations, is the key to
address the above problems. Therefore, we need an operation
to guide the network to give more attention to head locations
and suppress non-head regions. In virtue of the strong object-
focused capability, an attention model is incorporated into
the MCNN and thus forming a new architecture which could
generate more accurate density maps. We will describe the
attention model in Section III-B.

B. The attention model for crowd counting

Visual attention is an essential mechanism of the human
brain for understanding scenes effectively [31]. Therefore, we
aim to guide the network selectively focus on head regions
when estimating the density maps for crowd counting, no
matter how complex the background is and how various the
distributions are.

The attention model has been widely used for different
tasks with different focuses, e.g. focusing on different patches
that relevant to task domain and specific objects for image
classification and scene labeling, respectively; focusing on
feature maps with different resolutions for image segmenta-
tion; focusing on different joints and relevant motions for
action recognition and focusing on salient features at frame
level for video captioning. For crowd counting, the attention
model could be an effective tool to guide the network focusing
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Fig. 3. Density maps generated by different methods. Best viewed in color.

on head locations, which are the most important cue for
crowd counting. Therefore, an attention model is introduced to
identify how much attention to pay to features at different lo-
cations. Concretely, we use the attention model to concentrate
more on head regions, meanwhile suppressing the background
regions and body parts in images.

Herein, we briefly introduce the implementation of the
attention model used in this work. Suppose convolutional
features in layer i as f i, the soft attention is generated as:

S = ϕ(W c©f i + b) (1)

where ϕ is a nonlinear activation function and c© denotes
convolution operation. The attention model aims to identify
how much attention to pay to features at different locations,
which could be achieved by generating the probability scores
with a softmax operation applied to S spatially:

Mp =
eSp∑

p′∈P e
Sp′

(2)

p stands for the locations of pixels in soft attention S and M is
the probability map. Mp reflects the probability of presenting
head region in position p. By visualizing M , we can visualize
the attention at different locations, and the visualization of M
is illustrated in Section V-C. Note that Mp is shared across all
channels. The learned probability map is finally multiplied to
feature maps in layer i + 1 to generate attention features, as
equation 3 shows:

F att = f i+1 �M (3)

Where � denotes element-wise product. Before this oper-
ation, the channel of M is expanded as the same as f i+1.
F att is the refined attention feature map, which is the feature
re-weighted by the probability scores, and has the same size
as f i+1.

To this end, the trained attention model could adaptively
select the relevant positions where the heads are located and
assigned them higher weights. This makes the AM-CNN very
suitable for crowd counting.

In this work, we generate the probability map from the
concatenated multi-scale feature maps. It may be argued

that incorporating attention models into the shallow CNN
branches directly is also practical. Therefore, we tried different
architectures with the attention model and will talking about
it in section V-A.

C. Loss Function

Most of previous methods use Euclidean distance as the loss
function for counting task. As equation 4 shows:

LED =
1

N

N∑
i=1

(F (Xi,Θ)−Di)
2 (4)

Where N is the number of the training samples, D is the
ground-truth density map and F is the function that mapping
the input Xi to the estimated density map with parameters Θ.
In this paper, Euclidean distance is also selected as the loss
function. Differently, considering that the sizes of the input
images are not fixed, the Euclidean distance is divided by the
number of pixels Pix.

LED =
1

N

N∑
i=1

(F (Xi,Θ)−Di)
2

Pixi
(5)

We also find that for sparse crowd examples, especially
the one only contains several persons, the Euclidean loss is
usually very small, which indicates that these samples receive
insufficient treatment during training. Inspired by [18], we add
a relative deviation loss to address this problem. Hu et al. [18]
take relative deviation as one of the evaluation criterions but
only use Maximum Excess SubArrays (MESA) distance as
counting loss function. The relative deviation loss used in this
paper can be formulated as follows:

LRD =
1

N

N∑
i=1

(
yi − y

′

i

yi + z
)2 (6)

Where yi is the ground-truth counts and y
′

i is the sum
of pixel values of the estimated density map. z stands for
a constant which is used to avoid the errors being divided by
zero. The combination of the 2 loss functions is displayed in
equation 7:
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L = LED + αLRD (7)

Since the number of pixels in a training sample is usually
more than 106 and Pixi is not included in LRD, the loss
weight α is set as 10−7 in the experiments.

IV. IMPLEMENTATION DETAILS

The proposed method is conducted on 3 highly challenging
publicly datasets: ShanghaiTech [5], UCF CC 50 [8] and
WorldExpo’10 [4]. The details of the datasets can be found in
Section V. We shall firstly describe how to generate ground-
truth density maps, and then introduce the details of training
procedure, which include data process and parameters setting.

A. Density map generation

The ground-truth density map is converted from the labelled
head locations in the original image. Previous works [4], [5],
[7] generate density maps by locating a Gaussian kernel on
the objects. Zhang et al. [4] sum a 2D Gaussian kernel and a
bivariate normal distribution to map the heads and bodies, but
it is only applicable for sparse crowd examples. Sindagi et al.
[7] use same size of Gaussian kernels for all objects, which
cannot illustrate the perspective of the scene. Similar to [5],
we use the geometry-adaptive Gaussian kernels to generate
density maps. Suppose there are J objects in the original image
and one of the heads is located in pixel xi, then the generation
of density map D can be formulated as:

D(x) =
∑
xi∈J
N (x− xi, σi) (8)

WhereN is a Gaussian kernel and σ represents the variance.
For ShanghaiTech Part A and UCF CC 50 datasets, σi is
computed by k-nearest nighbour (KNN) according to the
average distance between the object and its 2 neighbours.
WorldExpo’10 dataset provides perspective maps P and σi is
defined as 0.2∗ Pi. Since crowds in ShanghaiTech Part B is
sparse and perspective maps are not provided, we set σ as 4.

B. Training Procedure

Pre-train: Since some datasets provide limited training
images, we adopt image cropping for ShanghaiTech and
UCF CC 50 datasets to expand the training sets. Cp patches
with 1/4 size of the original image are cropped in random
locations to pre-train the shallow CNN branches separately.
Note that the attention model is not included when pre-
training the shallow branches. A convolution operation with
1 × 1 filter is used to generate density map following the
former 4 convolutional layers. Cp is defined as 9 and 50 for
ShanghaiTech and UCF CC 50 datasets, respectively.

Fine-tune: In the fine-tuning procedure, the training dataset
is further expanded. We crop Cf images and flip them, thus
totally getting 2× Cf patches to fine-tune the AM-CNN. Cf

is defined as 100 and 150 for ShanghaiTech and UCF CC 50,
respectively. WorldExpo’10 dataset provides plenty of training
images, so we only expand them by flipping the original
images to train the AM-CNN. The 3 CNN branches are

initialized with the pre-trained parameters and the attention
model is random initialized with deviation of 0.01.

Parameters setting: In the training procedure, the learning
rate and momentum are set as 10−5 and 0.9 respectively for
Adam optimization. The batchsize is set as 1 for training. All
of the experiments are conducted on GeForce GTX TITAN-X.

V. EXPERIMENTAL RESULTS

This section presents the experimental results on the 3
public challenging datasets. For fair comparison, we use 2
standard metrics for evaluation as other CNN-based counting
methods did. The 2 metrics are defined as:

MAE =
1

N

∑
i∈N
|yi − y

′

i|,

MSE =

√
1

N

∑
i∈N

(yi − y
′
i)

2

(9)

Where MAE represents mean absolute error and MSE stands
for mean squared error, respectively. yi is the ground-truth
count and y

′

i is the estimated count of the AM-CNN for the
i-th sample.

A. Structural Adjustment based on ShanghaiTech Part A

This section presents the effectiveness of the attention model
and the structural adjustment of the whole architecture based
on ShanghaiTech dataset Part A. To identify the effectiveness
of the attention model, we first incorporated it into a shallow
CNN branch. The incorporation of the attention model and
a simple CNN branch is illustrated in Fig. 4 and can be
represented as AM-CNN(L), AM-CNN(M) and AM-CNN(S),
where L, M and S stand for large, medium and small sizes of
convolutional filters. As the results in Fig. 5 show, the counting
accuracy increases obviously by using the attention model
to emphasize head locations. The MAEs/MSEs of the AM-
CNN(L), AM-CNN(M) and AM-CNN(S) are 112.0/166.1,
121.1/200.8 and 129.1/198.1 while the CNN(L), CNN(M)
and CNN(S) get MAEs/MSEs of 141.2/206.8, 160.5/239.9
and 153.7/230.2, respectively. The performance improve-
ments achieved by the attention model are 29.2/40.7(L),
39.4/39.1(M) and 32.6/29.4(S), respectively. These results
demonstrate the high effectiveness of the attention model for
crowd counting.

Fig. 4. Structure of the attention model with a shallow CNN branch. After
4 convolutional layers, the attention model is utilized to generate attention
features directly. The filter sizes in the former 4 convolutional layers are
represented as L (Large, 9-7-7-7), M (Medium, 7-5-5-5) and S (Small, 5-3-
3-3).
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Fig. 5. Counting results with and without the attention model. CNN(L),
CNN(M) and CNN(S) represent shallow CNN branches displayed in [5],
where L, M and S mean large, medium and small respectively. AM-CNN(3)
stands for the architecture that integrate the attention model to each shallow
CNN branch before feature concatenation.

We also conducted experiments to determine integrating
the attention model before or after feature concatenation.
The first choice is incorporating the attention models to
the three shallow CNN branches and then concatenate the
attention features for density map generation, named as the
AM-CNN(3). This architecture will generate three different
probability maps, each regarding one receptive field. Another
choice is integrating the attention model after the concatena-
tion of the CNN branches, which is the AM-CNN. Compared
with the former, this architecture trains one probability map
based on the combination of the multi-scale features, therefore
well exploiting the multi-scale receptive fields when training
the attention model. Results in Fig. 5 show that the second
choice achieves higher counting accuracy. The MAE/MSE of
the AM-CNN is 11.1/21.9 lower than that of the AM-CNN(3).
Besides, compared with the MCNN [5], the proposed method
gets a significant performance improvement. The MAE/MSE
of the AM-CNN is 87.3/132.7 (22.9/40.5 lower than that of
the MCNN), which also demonstrates the effectiveness of the
attention model.

B. Comparison with other CNN-based counting methods

This section presents the comparison with recent CNN-
based methods. We shall first introduce the details of the
datasets, and then discuss the counting results.

1) ShanghaiTech: This dataset was published in [8], it
contains 2 subsets: Part A mainly consists of dense crowd
examples and Part B mainly focuses on sparse crowd exam-
ples. There are 300 training images and 182 testing images
in Part A whereas Part B contains 400 images for training
and 316 for testing. The crowd density varies greatly in this
dataset, making the counting task more challenging than other
datasets. We compare our method with other 5 recent CNN-
based methods in Table I.

Zhang et al. [4] mainly focus on the cross-scene crowd
counting by an operation of candidate scene retrieval. They
retrieve images with similar scenes from training data to
fine-tune the trained-CNN for target scene. In [6], high-level
prior is learned by utilizing feature maps trained for density
level classification and thus getting better results than former
methods. On the basis of the MCNN [5], which concatenate
feature maps with multi-scale receptive fields, Sam et al. [24]
train a switch-CNN to select a specific CNN regressor for
the images. In addition, they enforced a differential training

regimen to tackle the large scale and perspective variations.
Their method improves the performance obviously compared
with the MCNN. Apart from increasing the counting accuracy
by adding contextual information, Sindagi et al. [7] use
Generative Adversarial Network to sharper the density maps.
Based on the concatenation of multi-scale feature maps, the
proposed method exploit an attention model to emphasize head
regions when generating the density map. In addition, the
relative deviation loss compensates small Euclidean distance
errors. For Part A which mainly contains dense crowds, the
AM-CNN performs better than other methods expect for the
CP-CNN [7]. It may result from that the proposed method
only uses a density estimator while Sindagi et al. [7] add
contextual information which is trained by other two complex
structures to their counting architecture. But the addition of
contextual information comes with spurt growth of parameters:
the parameters of the CP-CNN [7] to be iterated for training
an image are about 40 times than that of the AM-CNN.
Images in Part B mainly focus on sparse crowds, and the
proposed AM-CNN gets the state-of-the-art performance on
this subset. Density maps illustrated in Fig. 7 and Fig. 8 show
that the AM-CNN could focus on every specific head regions
in sparse crowds, which may result in good performance for
sparse crowds. Notably, by integrating an attention model,
the proposed method performs much better than the MCNN
[5]. The MAEs/MSEs of the AM-CNN (w/o LRD) for these
2 sub-sets are 20.6/37.0 and 10.2/11.5 lower than that of
the MCNN, which demonstrate a significant performance
improvement. The counting accuracy is further increased by
adding the relative deviation loss: The MAE/MSE for Part B
reduced by 0.6/3.4, which is more significant than that for
Part A (2.3/3.5). Overall,the attention model guides the net-
work ignore most of the complex backgrounds and give more
attention to head regions. The relative deviation loss relatively
expands the estimation errors of sparse crowd examples during
training process, which also plays an important role in crowd
counting.

TABLE I
RESULTS ON SHANGHAITECH DATASET

Dataset Part A Part B

Method MAE MSE MAE MSE

Cross-Scene [4] 181.8 277.7 32.0 49.8

MCNN [5] 110.2 173.2 26.4 41.3

Cascaded-MLT [6] 101.3 152.4 20.0 31.1

Switching-CNN [24] 90.4 135.0 21.6 33.4

CP-CNN [7] 73.6 106.4 20.1 30.1

AM-CNN w/o LRD 89.6 136.2 16.2 29.8

AM-CNN with LRD 87.3 132.7 15.6 26.4

2) WorldExpo’10: This dataset is the largest one focusing
on cross-scene crowd counting. 199, 923 pedestrians are la-
belled at their centers of heads, and 3980 annotated frames
from 1132 video sequences form the training dataset. There are
totally 103 scenes captured by 108 surveillance cameras in this
dataset. Among them, 5 different scenes are used for testing,
each consists of 120 frames and thus forming 5 sub-sets. The
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pedestrian number in the testing set changes significantly over
time. In addition, this dataset provides Region of Interest (ROI)
map for each scene. Referring to [4], we utilize the ROI map
for both training and testing dataset.

Five state-of-the-art algorithms [4] [5] [24] [7] which have
been introduced in section V-B1 are used to compare with
the proposed method. As all of the previous works did, we
only display the MAE results in Table II. As the results show,
compared with the MCNN [5], the proposed method achieves
a significant improvement by integrating an attention model,
especially for scene 1 and scene 2. The distributions of people
in these 2 scenes change more obviously, demonstrating that
the attention model could emphasize head regions in the image
regardless of the non-uniform distribution. When adding the
relative deviation loss, the proposed AM-CNN gets the state-
of-the-art results for all subsets. In scene 1 and scene 5, people
distribute more dispersed and the crowds are sparser than other
scenes. The counting accuracy increases more obviously for
these 2 subsets, demonstrating that the relative deviation loss
plays an important role in sparse crowd counting. Overall, the
proposed method exploits an attention model to focus on head
locations, making the network robust to complex backgrounds
and non-uniform distributions. In addition, the Euclidean loss
of sparse crowd examples is usually small, but the relative
deviation loss compensates this case. All the results in table II
demonstrate that the AM-CNN performs well in spite of the
cross-scene problem.

3) UCF CC 50: This dataset contains 50 images collected
from publicly available web images. The number of people
in one image ranges from 94 to 4543 with an average of
1280. The scenes in this dataset cover a wide range, such
as concerts, stadiums, pilgrimages, protests and marathons. In
the experiment, we perform 5-fold cross validation as other
works did. Images of 1 − 10, 11 − 20, ... , 41 − 50 are used
as testing data in the 5 evaluation experiments, respectively.
Table III illustrates the comparison results.

Kumagai et al. [20] multiplied appearance-weights output
by a gating CNN to a mixture of expert CNNs to address the
appearance change problem. But this method only outputs the
number of people while others predict the density map simul-
taneously. Authors of [21] use both deep and shallow CNN
branches to extract features from whole image and patches.
They mainly focus on highly dense crowds, but the counting
accuracy is not compatible. Rubio et al. [23] design a Hydra
CNN which uses a pyramid of patches as input. Their scale-
aware model does mot need geometric information of scenes.
As Table III shows, the proposed method gets the lowest
MAE among these methods. To explore the performances for
different densities, we plot a histogram in Fig. 6 to display
the results and the comparisons between the proposed method
and the CP-CNN, which was the start-of-the art method. Note
that we conduct experiments using the AM-CNN with the
relative deviation loss since its effectiveness has been proved
on ShanghaiTech and WorldExpo’10 datasets.

The UCF CC 50 is categorized into 5 ranges to show
the counting accuracy for different densities. For scenarios
with less than 3000 persons, the AM-CNN performs much
better than the CP-CNN. However, for extremely dense crowds

Fig. 6. Testing Results on UCF CC 50 dataset for different densities. We
categorize the density into 5 ranges, which are 0-500, 500-1000, 1000-2000,
2000-3000 and 3000-5000. The number following the densities in the X-
Coordinate is the number of images in that range.

(with more than 3000 persons), the AM-CNN performs worse,
it gets much higher MAE and MSE value compared with
the CP-CNN. It may result from that the attention model
emphasizes every specific head location in sparse crowds but
can only roughly stress the crowd regions of dense crowds.
As aforementioned, the CP-CNN uses two complex structures
to exploit contextual information, and the good performance
for extremely dense crowds is at the expense of considerable
parameters. Nevertheless, the AM-CNN can still be applied
to many scenarios, such as concerts, stadiums, marathons and
markets, where there are less than 3000 persons in a single
image.

C. Probability maps

This section displays the probability maps and density maps
to explore the influence of the attention model. Fig. 7 and
Fig. 8 illustrate representative samples from ShanghaiTech and
WorldExpo’10 datasets. To explore whether the probability
maps present higher probability scores in head locations, we
overlay them on the original images. As Fig. 7 shows, the AM-
CNN could concentrate on specific head regions accurately
for sparse crowds. However, for the dense crowds, it can only
emphasize the general regions that crowds are located. It is
well known that given an image which contains too many
objects to concentrate on, humans usually focus on the regions
where most of the objects are located. Similarly, it is hard for
the attention model to focus on every specific head in a dense
crowd, and it concentrates on the region where the crowd is
located.

The regions within the green shapes in the first column of
Fig. 8 are ROIs. We overlay masks generated according to the
ROI on both probability maps and density maps to ignore the
masked regions. Fig. 8 demonstrates that the attention model
gives much more attention to head locations and thus making
the proposed AM-CNN generate clear and accurate density
maps.

The probability and density maps displayed in this section
demonstrate that the attention model could roughly filtered
complex background regions and body parts before the gener-
ation of density maps. As a result, the density maps become
clear and head-focused under the effect of the attention model.
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TABLE II
RESULTS ON WORLDEXPO’10 DATASET

Method Scene1 Scene2 Scene3 Scene4 Scene5 Average

Cross-Scene [4] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [5] 3.4 20.6 12.9 13.0 8.1 11.6

Switching-CNN [24] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [7] 2.9 14.7 10.5 10.4 5.8 8.86

AM-CNN w/o LRD 3.1 13.0 9.7 10.6 5.4 8.36

AM-CNN with LRD 2.5 13.0 9.7 10.0 4.0 7.84

Fig. 7. Probability and density maps of ShanghaiTech dataset generated by the AM-CNN. The 3 upper rows are samples selected from Part A and the rest are
from Part B. To illustrate the effectiveness of the attention model concisely, we overlay the probability maps on the original images and set the transparency
as 0.7, as the second column shows. Best viewed in color.

VI. CONCLUSION

In this paper, we proposed an attention model convolutional
neural network (AM-CNN) to well exploit head locations
for crowd counting. The architecture explicitly gives more
attention to head locations and suppresses non-head regions

by exploiting an attention model to generate a probability
map which presents higher probability scores in head regions.
Additionally, a relative deviation loss which plays an important
role for sparse crowd density prediction is introduced to
compensate the Euclidean loss. Experiments on three chal-
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Fig. 8. Probability and density maps of WorldExpo’s 10 generated by the AM-CNN. Regions in the green shapes are ROIs. We overlay masks generated
according to the ROI on the probability maps and density maps. Best viewed in color.

TABLE III
RESULTS ON UCF CC 50 DATASET

Method MAE MSE

Cross-Scene [4] 467.0 498.5

Crowdnet [21] 452.5 —

MCNN [5] 377.6 509.1

Hydra-CNN [23] 333.7 425.2

MoCNN [20] 361.7 493.3

Cascaded-MLT [6] 322.8 397.9

Switching-CNN [24] 318.1 439.2

CP-CNN [7] 295.8 320.9
AM-CNN 279.5 377.8

lenging datasets demonstrate the robustness of the AM-CNN
to complex backgrounds, scale variations and non-uniform
distributions.
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