Skip to main content

Implementation a Fuzzy System for Trajectory Tracking of an Omnidirectional Mobile Autonomous Robot

  • Chapter
  • First Online:
Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine

Abstract

This document presents a problem of tracking lines of an omnidirectional mobile robot, using a fuzzy proportional control system and classical proportional control to compare the result achieved by each control. It is implemented in the Robotino mobile platform, two digital optical sensors are used to control the direction of the angular velocity of the robot and an inductive analog sensor to control the linear velocity in x \( v_{x} \). For the analysis of the system, Robotino SIM and Simulink is used, which is an additional Matlab tool that allows graphic representation by means of blocks, both linear and non-linear systems. Tests and comparisons are made where the best performance of the fuzzy proportional controller is appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.J. Åström, W.K. Ho, Control theory and applications, in IEE proceedings-D, vol. 138, no. 2 (Institution of Electrical Engineers, marzo 1980)

    Google Scholar 

  2. F.G. Rossomando, C.M. Soria, Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID. Neural Comput. Appl. 26(5), 1179–1191 (2015)

    Article  Google Scholar 

  3. M. Pena et al., Fuzzy logic for omni directional mobile platform control displacement using FPGA and bluetooth. IEEE Lat. Am. Trans. 13(6), 1907–1914 (2015)

    Article  Google Scholar 

  4. C.-C. Tsai, X.-C. Wang, F.-C. Tai, C.-C. Chan, Fuzzy decentralized EIF-based pose tracking for autonomous omnidirectional mobile robot, in 2014 International Conference on Machine Learning and Cybernetics (2014), pp. 748–754

    Google Scholar 

  5. R. Choomuang, Hybrid Kalman filter/fuzzy logic based position control of autonomous mobile robot. Int. J. Adv. Robot. Syst. 2, 197–208 (2005)

    Article  Google Scholar 

  6. E.H. Mamdani, N. Baaklini, Prescriptive method for deriving control policy in a fuzzy-logic controller. Electron. Lett. 11(25–26), 625 (1975)

    Article  Google Scholar 

  7. M. Wada, S. Mori, Holonomic and omnidirectional vehicle with conventional tires, in Proceedings of IEEE International, and undefined 1996, ieeexplore.ieee.org (1996)

    Google Scholar 

  8. M. Masmoudi, N. Krichen, M. Masmoudi, N. Derbel, Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. J. 49, 901–919 (2016)

    Article  Google Scholar 

  9. S. Oltean, M. Dulau, Position control of Robotino mobile robot using fuzzy logic, in IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, May 2010

    Google Scholar 

  10. T. Kalmár-Nagy. Real-time trajectory generation for omnidirectional vehicles, in Proceedings of the American Control Conference (2002), pp. 286–291

    Google Scholar 

  11. C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)

    Article  MathSciNet  Google Scholar 

  12. N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via Fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)

    Article  Google Scholar 

  13. O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)

    Google Scholar 

  14. G.M. Mendez, O. Castillo. Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems. FUZZ’05 (2005), pp. 230–235

    Google Scholar 

  15. Claudia I. González, Patricia Melin, Juan R. Castro, Olivia Mendoza, Oscar Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

    Article  Google Scholar 

  16. Emanuel Ontiveros, Patricia Melin, Oscar Castillo, High order α-planes integration: a new approach to computational cost reduction of General Type-2 Fuzzy Systems. Eng. Appl. AI 74, 186–197 (2018)

    Article  Google Scholar 

  17. P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955 (2001)

    Article  Google Scholar 

  18. E. Rubio, O. Castillo, F. Valdez, P. Melin, C. I. González, G. Martinez. An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst. 2017, 7094046:1–7094046:23 (2017)

    Article  Google Scholar 

  19. Patricia Melin, Alejandra Mancilla, Miguel Lopez, Olivia Mendoza, A hybrid modular neural network architecture with fuzzy Sugeno Integration for time series forecasting. Appl. Soft Comput. 7(4), 1217–1226 (2007)

    Article  Google Scholar 

  20. P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, Boca Raton, 2001)

    Book  Google Scholar 

  21. Patricia Melin, Daniela Sánchez, Oscar Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express thank to the Consejo Nacional de Ciencia y Tecnologia and Tecnológico Nacional de México/Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar Castillo or Prometeo Cortés-Antonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Aguilar, J., Castillo, O., Cortés-Antonio, P. (2020). Implementation a Fuzzy System for Trajectory Tracking of an Omnidirectional Mobile Autonomous Robot. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_23

Download citation

Publish with us

Policies and ethics