Skip to main content

Computational Challenges and Opportunities in Financial Services

  • Conference paper
  • First Online:
  • 972 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11910))

Abstract

As one of the fastest growing areas of applied scientific computing, financial services uses high performance computing techniques to respond to both governmental regulatory bodies as well as to deal with a fast-paced business environment. Financial services industry is data driven and aims to resolve mathematical challenges to make sense out of data to solve complex problems in pricing, risk management, and portfolio optimization. These challenges are solved by financial institutions regularly, and the goal here is to provide a short survey of approaches and techniques used to solve these problems. Cloud is one of the areas of interest, since said challenges can benefit from the dynamicity and metered pricing of Cloud computing, plus being virtually limitless in scale. FPGA- and GPU-as-a-Service will also be explored as they are showing a great deal of benefit in solving such problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haugh, M.B., Lo, A.W.: Computational challenges in portfolio management. Comput. Sci. Eng. 3(3), 54 (2001)

    Article  Google Scholar 

  2. Grauer-Gray, S., et al.: Accelerating financial applications on the GPU. In: Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing Units. ACM (2013)

    Google Scholar 

  3. Solomon, S., Thulasiram, R.K., Thulasiraman, P.: Option pricing on the GPU. In: 2010 IEEE 12th International Conference on High Performance Computing and Communications (HPCC). IEEE (2010)

    Google Scholar 

  4. Banks, S., Beadling, P., Ferencz, A.: FPGA implementation of pseudo random number generators for Monte Carlo methods in quantitative finance. In: 2008 International Conference on Reconfigurable Computing and FPGAs. IEEE (2008)

    Google Scholar 

  5. Woods, N.A., VanCourt, T.: FPGA acceleration of quasi-Monte Carlo in finance. In: 2008 International Conference on Field Programmable Logic and Applications. IEEE (2008)

    Google Scholar 

  6. Pottathuparambil, R., et al.: Low-latency FPGA based financial data feed handler. In: 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines. IEEE (2011)

    Google Scholar 

  7. Krollner, B., Vanstone, B.J., Finnie, G.R.: Financial time series forecasting with machine learning techniques: a survey. In: ESANN (2010)

    Google Scholar 

  8. Eckhardt, R.: Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Sci. 15(131–136), 30 (1987)

    MathSciNet  Google Scholar 

  9. Glasserman, P., Heidelberger, P., Shahabuddin, P.: Efficient Monte Carlo methods for value-at-risk (2010)

    Google Scholar 

  10. Tezuka, S., et al.: Monte Carlo grid for financial risk management. Future Gener. Comput. Syst. 21(5), 811–821 (2005)

    Article  Google Scholar 

  11. Gobet, E.: Advanced Monte Carlo methods for barrier and related exotic options. In: Handbook of Numerical Analysis, pp. 497–528. Elsevier (2009)

    Google Scholar 

  12. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, vol. 23. Springer, Berlin (2013). https://doi.org/10.1007/978-3-662-12616-5

    Book  MATH  Google Scholar 

  13. Microsoft Azure (2018). http://azure.microsoft.com. Accessed 12 Feb 2018

  14. Staum, J.: Monte Carlo computation in finance. In: L’Ecuyer, P., Owen, A. (eds.) Monte Carlo and Quasi-Monte Carlo Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  15. Joseph, T.: Computational financing techniques and fundamental challenges in portfolio optimization. IOSR J. Hum. Soc. Sci. 9(6), 51–58 (2013)

    Google Scholar 

  16. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korn, R., Korn, E.: Option Pricing and Portfolio Optimization: Modern Methods of Financial Mathematics, vol. 31. American Mathematical Society (2001)

    Google Scholar 

  18. Korn, R., Müller, S.: Binomial Trees in Option Pricing—History, Practical Applications and Recent Developments. In: Devroye, L., Karasözen, B., Kohler, M., Korn, R. (eds.) Recent Developments in Applied Probability and Statistics, pp. 59–77. Springer, Berlin (2010). https://doi.org/10.1007/978-3-7908-2598-5_3

    Chapter  MATH  Google Scholar 

  19. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  20. Committee, B.: Basel III: a global regulatory framework for more resilient banks and banking systems. Basel Committee on Banking Supervision, Basel (2010)

    Google Scholar 

  21. Gleeson, S.: International Regulation of Banking: Basel II: Capital and Risk Requirements. OUP Catalogue (2010)

    Google Scholar 

  22. Hakenes, H., Schnabel, I.: Bank size and risk-taking under Basel II. J. Bank. Finance 35(6), 1436–1449 (2011)

    Article  Google Scholar 

  23. Tarullo, D.K.: Banking on Basel: The Future of International Financial Regulation. Peterson Institute (2008)

    Google Scholar 

  24. Alexander, C.: Volatility and correlation: measurement, models and applications. Risk Manag. Anal. 1, 125–171 (1998)

    Google Scholar 

  25. Brummelhuis, R., et al.: Principal component value at risk. Math. Finance 12(1), 23–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chong, J., Keutzer, K., Dixon, M.F.: Acceleration of Market Value-at-Risk Estimation. Available at SSRN 1576402 (2009)

    Google Scholar 

  27. Giot, P.: Market risk models for intraday data. Eur. J. Finance 11(4), 309–324 (2005)

    Article  MathSciNet  Google Scholar 

  28. Jorion, P.: Value at Risk. McGraw-Hill, New York (1997)

    Google Scholar 

  29. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press (2015)

    Google Scholar 

  30. Bertsimas, D., Lo, A.W.: Optimal control of execution costs. J. Financ. Mark. 1(1), 1–50 (1998)

    Article  Google Scholar 

  31. Bodie, Z., et al.: Investments. McGraw-Hill Education (2015)

    Google Scholar 

  32. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Giesecke, K.: An overview of credit derivatives. Available at SSRN 1307880 (2009)

    Google Scholar 

  34. Giesecke, K.: Portfolio credit risk: top-down versus bottom-up approaches. Front. Quant. Finance, 251 (2009)

    Google Scholar 

  35. Fabozzi, F.J.: The Handbook of Mortgage-Backed Securities. Oxford University Press (2016)

    Google Scholar 

  36. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer, Berlin (2006). https://doi.org/10.1007/b97336

    Book  MATH  Google Scholar 

  37. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84(6), 957–1041 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Anderson, D.F., Higham, D.J., Sun, Y.: Computational complexity analysis for Monte Carlo approximations of classically scaled population processes. Multiscale Model. Simul. 16(3), 1206–1226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Desmettre, S., Korn, R.: 10 computational challenges in finance. In: De Schryver, C. (ed.) FPGA Based Accelerators for Financial Applications, pp. 1–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15407-7_1

    Chapter  Google Scholar 

  40. Zhang, P.G.: Exotic options: a guide to second generation options. World Scientific (1998)

    Google Scholar 

  41. Dempster, M., Hutton, J.: Fast numerical valuation of American, exotic and complex options. Appl. Math. Finance 4(1), 1–20 (1997)

    Article  MATH  Google Scholar 

  42. Pan, S.-Q.: A survey of financial risk measurement. In: 6th International Conference on Management Science and Management Innovation (MSMI 2019). Atlantis Press (2019)

    Google Scholar 

  43. Sedighi, A., Deng, Y., Zhang, P.: Fariness of task scheduling in high performance computing environments. Scalable Comput.: Pract. Exp. 15(3), 273–285 (2014)

    Google Scholar 

  44. Sedighi, A., Smith, M.: Fair Scheduling in High Performance Computing Environments. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14568-2

    Book  Google Scholar 

  45. Seth, T., Chaudhary, V.: Big Data in Finance (2015)

    Google Scholar 

  46. Barndorff-Nielsen, O.E., Shephard, N.: Power and bipower variation with stochastic volatility and jumps. J. Financ. Econom. 2(1), 1–37 (2004)

    Article  Google Scholar 

  47. Bollerslev, T., Wright, J.H.: High-frequency data, frequency domain inference, and volatility forecasting. Rev. Econ. Stat. 83(4), 596–602 (2001)

    Article  Google Scholar 

  48. Grammig, J., Wellner, M.: Modeling the interdependence of volatility and inter-transaction duration processes. J. Econom. 106(2), 369–400 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8(4), 291–323 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. McAleer, M., Medeiros, M.C.: Realized volatility: a review. Econom. Rev. 27(1–3), 10–45 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. High performance compute VM sizes. Virtual Machine Documentation (2019). https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc. Accessed 22 July 2019

  52. What are field-programmable gate arrays (FPGA) (2019). https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas. Accessed 22 July 2019

  53. Armbrust, M., et al.: Above the Clouds: A Berkeley View of Cloud Computing (2009)

    Google Scholar 

  54. Avram, M.-G.: Advantages and challenges of adopting cloud computing from an enterprise perspective. Procedia Technol. 12, 529–534 (2014)

    Article  Google Scholar 

  55. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  56. Smith, D.M.: Cloud computing primer for 2016. Gartner Inc., Stamford (2016)

    Google Scholar 

  57. Azure HC-series Virtual Machines cross 20,000 cores for HPC workloads (2019). https://azure.microsoft.com/en-us/blog/azure-hc-series-virtual-machines-crosses-20000-cores-for-hpc-workloads/. Accessed 22 July 2019

  58. Working with large virtual machine scale sets (2019). https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-placement-groups. Accessed 22 July 2019

  59. Enabling the financial services risk lifecycle with Azure and R. (2019). https://docs.microsoft.com/en-us/azure/industry/financial/fsi-risk-modeling. Accessed 22 July 2019

  60. Cray in Azure (2019). https://azure.microsoft.com/en-us/solutions/high-performance-computing/cray/. Accessed 22 July 2019

  61. What is axiomaBlue? (2019). https://www.axioma.com/products/axiomablue/. Accessed 22 July 2019

  62. Deploy a model as a web service on an FPGA with Azure Machine Learning service (2019). https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-fpga-web-service. Accessed 22 July 2019

  63. Ferguson, R., Green, A.D.: Deeply learning derivatives. Available at SSRN 3244821 (2018)

    Google Scholar 

  64. Deploy a deep learning model for inference with GPU (2019). https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-inferencing-gpus. Accessed 22 July 2019

  65. Kerrigan, B., Chen, Y.: A study of entropy sources in cloud computers: random number generation on cloud hosts. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 286–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33704-8_24

    Chapter  Google Scholar 

  66. Yap, A.Y.: Information Systems for Global Financial Markets: Emerging Developments and Effects: Emerging Developments and Effects. IGI Global (2011)

    Google Scholar 

  67. Tian, X., Benkrid, K.: High-performance quasi-monte carlo financial simulation: FPGA vs. GPP vs. GPU. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 3(4), 26 (2010)

    Article  Google Scholar 

  68. Singla, N., et al.: Financial Monte Carlo simulation on architecturally diverse systems. In: 2008 Workshop on High Performance Computational Finance. IEEE (2008)

    Google Scholar 

  69. Kim, H., et al.: Online risk analytics on the cloud. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE Computer Society (2009)

    Google Scholar 

  70. Qiu, M., et al.: Data transfer minimization for financial derivative pricing using Monte Carlo simulation with GPU in 5G. Int. J. Commun Syst 29(16), 2364–2374 (2016)

    Article  Google Scholar 

  71. Azure N-Series VMs and NVIDIA GPUs in the Cloud (2016). https://buildazure.com/azure-n-series-vms-and-nvidia-gpus-in-the-cloud/. Accessed 31 July 2019

  72. Bernemann, A., Schreyer, R., Spanderen, K.: Accelerating exotic option pricing and model calibration using GPUs. Available at SSRN 1753596 (2011)

    Google Scholar 

  73. Gaikwad, A., Toke, I.M.: GPU based sparse grid technique for solving multidimensional options pricing PDEs. In: Proceedings of the 2nd Workshop on High Performance Computational Finance. ACM (2009)

    Google Scholar 

  74. Abbas-Turki, L.A., Lapeyre, B.: American options pricing on multi-core graphic cards. In: 2009 International Conference on Business Intelligence and Financial Engineering. IEEE (2009)

    Google Scholar 

  75. De Schryver, C. (ed.): FPGA Based Accelerators for Financial Applications. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15407-7

    Book  Google Scholar 

  76. Firestone, D., et al.: Azure accelerated networking: SmartNICs in the public cloud. In: 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2018) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Art Sedighi or Doug Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sedighi, A., Jacobson, D. (2019). Computational Challenges and Opportunities in Financial Services. In: Qiu, M. (eds) Smart Computing and Communication. SmartCom 2019. Lecture Notes in Computer Science(), vol 11910. Springer, Cham. https://doi.org/10.1007/978-3-030-34139-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34139-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34138-1

  • Online ISBN: 978-3-030-34139-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics