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Abstract. Proof assistants, such as Isabelle/HOL, offer tools to facili-
tate inductive theorem proving. Isabelle experts know how to use these
tools effectively; however, there is a little tool support for transferring
this expert knowledge to a wider user audience. To address this prob-
lem, we present our domain-specific language, LiFtEr. LiFtEr allows
experienced Isabelle users to encode their induction heuristics in a style
independent of any problem domain. LiFtEr’s interpreter mechanically
checks if a given application of induction tool matches the heuristics,
thus automating the knowledge transfer loop.
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1 Introduction

Consider the following reverse functions, rev and itrev, presented in a tutorial
of Isabelle/HOL [26]:

primrec rev::"’a list =>’a list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"

fun itrev::"’a list =>’a list =>’a list" where
"itrev [] ys = ys"

| "itrev (x#xs) ys = itrev xs (x#ys)"

where # is the list constructor, and @ appends two lists. How do you prove the
following lemma?

lemma "itrev xs ys = rev xs @ ys"
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2 Y. Nagashima

Since both rev and itrev are defined recursively, it is natural to imagine that we
can handle this problem by applying induction. But how do you apply induction
and why? What induction heuristics do you use? In which language do you
describe those heuristics?

Modern proof assistants (PAs), such as Isabelle/HOL [26], are forming the
basis of trustworthy software. Klein et al., for example, verified the correctness of
the seL4 micro-kernel in Isabelle/HOL [11], whereas Leroy developed a certifying
C compiler, CompCert, using Coq [15]. Despite the growing number of such
complete formal verification projects, the limited progress in proof automation
still keeps the cost of proof development high, thus preventing the wide spread
adoption of complete formal verification.

A noteworthy approach in proof automation for proof assistants is hammer
tools [1]. Sledgehammer, for example, exports proof goals in Isabelle/HOL to var-
ious external automated theorem provers (ATPs) to exploit the state-of-the-art
proof automation of these backend provers; however, the discrepancies between
the polymorphic higher-order logic of Isabelle/HOL and the monomorphic first-
order logic of the backend provers severely impair Sledgehammer’s performance
when it comes to inductive theorem proving (ITP).

This is unfortunate for two reasons. Firstly, many Isabelle users chose Is-
abelle/HOL precisely because its higher-order logic is expressive enough to spec-
ify mathematical objects and procedures involving recursion without introducing
new axioms. Secondly, induction lies at the heart of mathematics and computer
science. For instance, induction is often necessary for reasoning about natural
numbers, recursive data-structures, such as lists and trees, computer programs
containing recursion and iteration [3].

This is why ITP remains as a long-standing challenge in computer science,
and its automation is much needed. Facing the limited automation in ITP, Gram-
lich surveyed the problems in ITP and presented the following prediction in
2005 [6]:

in the near future, ITP will only be successful for very specialized do-
mains for very restricted classes of conjectures. ITP will continue to be
a very challenging engineering process.

We address this conundrum with our domain-specific language, LiFtEr. LiFtEr
allows experienced Isabelle users to encode their induction heuristics in a style
independent of problem domains. LiFtEr’s interpreter mechanically checks if a
given application of induction is compatible with the induction heuristics written
by experienced users. Our research hypothesis is that:

it is possible to encode valuable induction heuristics for Isabelle/HOL in
LiFtEr and these heuristics can be valid across diverse problem domains,
because LiFtEr allows for meta-reasoning on applications of induction
methods, without relying on concrete proof goals, their underlying proof
states, nor concrete applications of induction methods.
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We developed LiFtEr as an Isabelle theory and integrated LiFtEr into Isabelle’s
proof language, Isabelle/Isar, and its proof editor, Isabelle/jEdit. This allows for
an easy installation process: to use LiFtEr, users only have to import the relevant
theory files into their theory files, using Isabelle’s import keyword. Our working
prototype is available at GitHub [20].

The important difference of LiFtEr from other tactic languages, such as
Eisbach [16] and Ltac [4], is that LiFtEr itself is not a tactic language but
a language to write how one should use Isabelle’s existing proof method for
induction. To the best of our knowledge, LiFtEr is the first language in which
one can write how to use a tactic by mechanically analyzing the structures of
proof goals in a style independent of any problem domain.

2 Induction in Isabelle/HOL

To handle inductive problems, modern proof assistants offer tools to apply in-
duction. For example, Isabelle comes with the induct proof method and the
induction method 3. Nipkow et al. proved our ongoing example as follows [25]:

lemma model_prf:"itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) by auto

Namely, they applied structural induction on xs while generalizing ys before
applying induction by passing the string ys to the arbitrary field. The resulting
sub-goals are:

1. !!ys. itrev [] ys = rev [] @ ys
2. !!a xs ys. (!!ys. itrev xs ys = rev xs @ ys) ==>

itrev (a # xs) ys = rev (a # xs) @ ys

where !! is the universal quantifier and ==> is the implication in Isabelle’s meta-
logic. Due to the generalization, the ys in the induction hypothesis is quantified
within the hypothesis, and it is differentiated from the ys that appears in the
conclusion. Had Nipkow et al. omitted arbitrary: ys, the first sub-goal would
be the same, but the second sub-goal would have been:

2. !!a xs. itrev xs ys = rev xs @ ys ==>
itrev (a # xs) ys = rev (a # xs) @ ys

Since the same ys is shared by the induction hypothesis and the conclusion, the
subsequent application of auto fails to discharge this sub-goal.

It is worth noting that in general there are multiple equivalently appropriate
combinations of arguments to prove a given inductive problem. For instance, the
following proof snippet shows an alternative proof script for our example:

lemma alt_prf:"itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:itrev.induct) by auto

3 Proof methods are the Isar syntactic layer of LCF-style tactics.
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Here we passed the itrev.induct rule to the rule field of the induct method
and proved the lemma by recursion induction 4 over itrev. This rule was derived
by Isabelle automatically when we defined itrev, and it states the following:

(!!ys. P [] ys) ==>
(!!x xs ys. P xs (x # ys) ==> P (x # xs) ys) ==>
P a0 a1

Essentially, this rule states that to prove a property P of a0 and a1 we have to
prove it for two cases where a0 is the empty list and the list with at least two
elements. When the induct method takes this rule and xs and ys as induction
variables, Isabelle produces the following sub-goals:

1. !!ys. itrev [] ys = rev [] @ ys
2. !!x xs ys. itrev xs (x # ys) = rev xs @ x # ys ==>

itrev (x # xs) ys = rev (x # xs) @ ys

where the two sub-goals correspond to the two clauses in the definition of itrev.
There are other lesser-known techniques to handle difficult inductive prob-

lems using the induct method, and sometimes users have to develop useful aux-
iliary lemmas manually; however, for most cases the problem of how to apply
induction boils down to the the following three questions:

– On which terms do we apply induction?
– Which variables do we generalize?
– Which rule do we use for recursion induction?

Isabelle experts resort to induction heuristics to answer such questions and decide
what arguments to pass to the induct method; however, such reasoning still
requires human engineers to carefully investigate the inductive problem at hand.
Moreover, Isabelle experts’ induction heuristics are sparsely documented across
various documents, and there was no way to encode their heuristics as programs.
For the wide spread adoption of complete formal verification, we need a program
language to encode such heuristics and the system to check if an invocation of
the induct method written by an Isabelle novice complies with such heuristics.
We developed LiFtEr, taking these three groups of questions as a design space.

3 Overview and Syntax of LiFtEr

We designed LiFtEr to encode induction heuristics as assertions on invocations
of the induct method in Isabelle/HOL. An assertion written in LiFtEr takes
the pair of a proof goal with its underlying proof state and arguments passed to
the induct method. When one applies a LiFtEr assertion to an invocation of
the induct method, LiFtEr’s interpreter returns a boolean value as the result
of the assertion applied to the proof goals and their underlying proof state.
4 Recursion induction is also known as functional induction or computation induction.
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Fig. 1. The Workflow of LiFtEr.

The goal of a LiFtEr programmer is to write assertions that implement
reliable heuristics. A heuristic encoded as a LiFtEr assertion is reliable when it
satisfies the following two properties:

1. The LiFtEr interpreter is likely to evaluate the assertion to True when the
arguments of the induct method are appropriate for the given proof goal.

2. The LiFtEr interpreter is likely to evaluate the assertion to False when the
arguments are inappropriate for the goal.

Fig. 1 illustrates the workflow of LiFtEr. Firstly, Isabelle experts encode the
gist of promising applications of induction based on experts’ proofs. Note that
the heuristics encoded in LiFtEr become applicable to problem domains that the
experts users have not even encountered at the time of writing the assertions.

When new Isabelle users are facing an inductive problem and are unsure if
their application of induction is a valid approach or not, they can apply LiFtEr
assertions written by experts using the assert_LiFtEr keyword to their proof
goal and their candidate arguments.

LiFtEr’s interpreter checks if the pair of new users’ proof goal and candidate
arguments to the inductmethod is compatible with the experts’ heuristics. If the
interpreter evaluates the pair to True, Isabelle prints “Assertion succeeded.”
in the Output panel of Isabelle/jEdit [28]. If the interpreter evaluates the pair
to False, Isabelle highlights the assert_LiFtEr in red and prints “Assertion
failed.” in the Output panel.

Program 1 shows the essential part of LiFtEr’s abstract syntax. LiFtEr has
four types of variables: number, rule, term, and term_occurrence. A value of
type number is a natural number from 0 to the maximum of the following two
numbers: the number of terms appearing in the proof goals at hand, and the
maximum arity of constants appearing in the proof goals. A value of type rule
corresponds to a name of an auxiliary lemma passed to the induct method as
an argument in the rule field.

The difference between term and term_occurrence is crucial: a value of
term is a term appearing in proof goals, whereas a value of term_occurrence
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Program 1 The Abstract Syntax of LiFtEr.

assertion := atomic | connective | quantifier | ( assertion )
type := term | term_occurrence | rule | number
modifier_term := induction_term | arbitrary_term
quantifier := ∃x : type. assertion

| ∀x : type. assertion
| ∃x : term ∈ modifier_term . assertion
| ∀x : term ∈ modifier_term . assertion
| ∃x : term_occurrence ∈ y : term . assertion
| ∀x : term_occurrence ∈ y : term . assertion

connective := True | False | assertion ∨ assertion | assertion ∧ assertion
assertion → assertion | ¬ assertion

pattern := all_only_var | all_constructor | mixed
atomic :=

rule is_rule_of term_occurrence
| term_occurrence term_occurrence_is_of_term term
| are_same_term ( term_occurrence , term_occurrence )
| term_occurrence is_in_term_occurrence term_occurrence
| is_atomic term_occurrence
| is_constant term_occurrence
| is_recursive_constant term_occurrence
| is_variable term_occurrence
| is_free_variable term_occurrence
| is_bound_variable term_occurrence
| is_lambda term_occurrence
| is_application term_occurrence
| term_occurrence is_an_argument_of term_occurrence
| term_occurrence is_nth_argument_of term_occurrence
| term is_nth_induction_term number
| term is_nth_arbitrary_term number
| pattern_is ( number , term_occurrence , pattern )
| is_at_deepest term_occurrence
| ...

is an occurrence of such terms. It is important to distinguish terms and term
occurrences because the induct method in Isabelle/HOL only allows its users to
specify induction terms but it does not allow us to specify on which occurrences
of such terms we intend to apply induction.

The connectives, ∧, ∨, ¬, and → correspond to conjunction, disjunction,
negation, and implication in the classical logic, respectively; and → admits the
principle of explosion.

LiFtEr has four essential quantifiers and two quantifiers as syntactic sugar.
As is often the case, ∀ quantifies over variables universally, and ∃ stands for
the existence of a variable it binds. Again, it is important to notice the differ-
ence between the quantifiers over term and the ones over term_occurrence.
For example, ∀_. ∈ term quantifies all sub-terms appearing in the proof goals,
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whereas ∀_. ∈ term_occurrence quantifies all occurrences of such sub-terms.
Quantified variables restricted to induction_term by the membership function
∈ are quantified over all terms passed to the induct method as induction terms,
while quantified variables restricted to arbitrary_term are quantified over all
terms passed to the induct method as arguments in the arbitrary field.

Some atomic assertions judge properties of term occurrences, and some judge
the syntactic structure of proof goals with respect to certain terms, their occur-
rences, or certain numbers. While most atomic assertions work on the syntactic
structures of proof goals, Pattern provides a means to describe a limited amount
of semantic information of proof goals since it checks how terms are defined.
Section 4 explains the meaning of important atomic assertions through LiFtEr’s
standard heuristics.

Attentive readers may have noticed that LiFtEr’s syntax does not cover any
user-defined types or constants. This absence of specific types and constants
is our intentional choice to promote induction heuristics that are valid across
various problem domains: it encourages LiFtEr users to write heuristics that are
not specific to particular data-types or functions. And LiFtEr’s interpreter can
check if an application of the induct method is compatible with a given LiFtEr
heuristic even if the proof goal involves user-defined data-types and functions
even though such types and functions are unknown to the LiFtEr developer
or the author of the heuristic but come into existence in the future only after
developing LiFtEr and such heuristic.

4 LiFtEr’s Standard Heuristics

This section presents LiFtEr’s standard heuristics and illustrates how to use
those atomic assertions and quantifiers to encode induction heuristics.

4.1 Heuristic 1: Induction terms should not be constants.

Let us revise the first example lemma about the equivalence of two reverse func-
tions, itrev and rev. One naive induction heuristic would be “any induction
term should not be a constant” 5 In LiFtEr, we can encode this heuristic as the
following assertion 6:

∀ t1 : term ∈ induction_term.
∃ to1 : term_occurrence.

( to1 term_occurrence_is_of_term t1 )
∧

¬ ( is_constant to1 )
5 This naive heuristic is not very reliable: there are cases where the induct method
takes terms involving constants and apply induction appropriately by automatically
introducing induction variables. See Concrete Semantics [25] for more details.

6 For better readability we omit parentheses where the binding of terms is obvious
from indentation.
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Fig. 2. The User Interface of LiFtEr.

Note the use of quantifiers over induction_terms and term_occurrences: when
LiFtEr handles induction terms, LiFtEr treats them as terms, but it is often
necessary to analyze the occurrences of these terms in the proof goal to decide
how to apply induction. In our example lemma, xs is a variable, which appears
twice: once as the first argument of itrev, and once as the first argument of
rev. With this in mind, the above assertion reads as follows:

for all induction terms, named t1, there exists a term occurrence, named
to1, such that to1 is an occurrence of t1 and to1 is not a constant.

Now we compare this heuristic with the model proof by Nipkow et al.
The only induction term, xs, has two occurrences in the proof goal both

as variables. Therefore, if we apply this LiFtEr assertion to the model proof,
LiFtEr’s interpreter acknowledges that the model proof complies with the in-
duction heuristic defined above.

Fig. 2 shows the user interface of LiFtEr. In the second line where the cur-
sor is staying, LiFtEr’s interpreter executes the aforementioned reasoning and
concludes that the model proof by Nipkow et al. is compatible with this heuris-
tic, printing “Assertion succeeded.” in the Output panel. On the contrary,
the fourth line applies the same heuristic to another possible combination of ar-
guments to the induct method (induct itrev arbitrary: ys) and concludes
that this candidate induction is not compatible with our heuristic because itrev
is a constant. LiFtEr also highlights this line in red to warn the user.

It is a common practice to analyze occurrences of specific terms when de-
scribing induction heuristics. Therefore, we introduced two pieces of syntactic
sugar to avoid boilerplate code: ∃_ : term_occurrence ∈ _ : term and ∀_
: term_occurrence ∈ _ : term. Both of these quantify over term occurrences
of a particular term rather than all term occurrences in the proof goal at hand.
Using ∃_ : term_occurrence ∈ _ : term, we can shrink the above assertion
from 5 lines to 3 lines as follows:

∀ t1 : induction_term.
∃ to1 : term_occurrence ∈ t1 : term.

¬ ( is_constant to1 )
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In English, this reads as follows:

for all induction terms, named t1, there exists an occurrence of t1, named
to1, such that to1 is not a constant.

4.2 Heuristic 2. Induction terms should appear at the bottom of
syntax trees.

Not applying induction on a constant would sound a plausible heuristic, but such
heuristic is not very useful.

In this sub-section, we encode an induction heuristic that analyzes not only
the properties of the induction terms but also the location of their occurrences
within the proof goal at hand. When attacking inductive problems with many
variables, it is sometimes a good attempt to apply induction on variables that
appear at the bottom of the syntax tree representing the proof goal. We encode
such heuristic using is_at_deepest as the following LiFtEr assertion:

∀ t1 : induction_term.
∃ to1 : term_occurrence ∈ t1 : term.

is_atomic to1 → is_at_deepest to1

In English, this assertion reads as follows:

for all induction terms, named t1, there exists an occurrence of t1, named
to1, such that if to1 is an atomic term then to1 lies at the deepest layer
in the syntax tree that represents the proof goal.

We used the infix operator, →, to add the condition that we consider only the
induction terms that are atomic terms. An atomic term is either a constant,
free variable, schematic variable, or variable bound by a lambda abstraction. We
added this condition because it makes little sense to check if the induction term
resides at the bottom of the syntax tree when an induction term is a compound
term: such compound terms have sub-terms at lower layers.

LiFtEr’s interpreter acknowledges that the model solution provided by Nip-
kow et al. complies with this heuristic when applied to this lemma: there is only
one induction term, xs, and xs appears as an argument of rev on the right-hand
side of the equation in the lemma at the lowest layer of this syntax tree.

4.3 Heuristic 3. All induction terms should be arguments of the
same occurrence of a recursively defined function.

Probably, it is more meaningful to analyze where induction terms reside in the
proof goal with respect to other terms in the goal. More specifically, one heuristic
for promising application of induction would be “apply induction on terms that
appear as arguments of the same occurrence of a recursively defined function”. We
encode this heuristic using LiFtEr’s atomic assertions, is_recursive_constant
and is_an_argument_of, as follows:
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∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.

∀ t2: term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.

is_recursive_constant to1 ∧ to2 is_an_argument_of to1

where is_recursive_constant checks if a constant is defined recursively or not,
and is_an_argument_of takes two term occurrences and checks if the first one
is an argument of the second one.

Note that using is_recursive_constant this assertion checks not only the
syntactic information of the proof goal at hand, but it also extracts an essential
part of the semantic information of constants appearing in the goal, by inves-
tigating how these constants are defined in the underlying proof context. As a
whole, this assertion reads as follows:

there exists a term, named t1, such that there exists an occurrence of t1,
named to1, such that for all induction terms, named t2, there exists an
occurrence of t2, named to2, such that to1 is defined recursively and to2
appears as an argument of to1.

Attentive readers may have noticed that we quantified over induction terms
within the quantification over to1, so that this induction heuristic checks if all
induction terms occur as arguments of the same constant.

The LiFtEr interpreter confirms that the model proof is compatible with
this heuristic as well: the constant, itrev, is defined recursively and has an
occurrence that takes the only induction variable xs as the first argument.

4.4 Heuristic 4. One should apply induction on the nth argument
of a function where the nth parameter in the definition of the
function always involves a data-constructor.

The previous heuristic checks if all induction terms are arguments of the same
occurrence of a recursively defined function. Sometimes we can even estimate on
which arguments of such function we should apply induction by inspecting the
definition of the function more carefully.

We introduce two constructs to support this style of reasoning: is_nth_-
argument_of and pattern_is. is_nth_argument_of takes a term occurrence,
a number, and another term occurrence, and it checks if the first term occurrence
is the nth argument of the second term occurrence where counting starts at 0.
pattern_is takes a number, a term occurrence, one of three patterns: all_-
only_var, all_constructor, and mixed. Each of such patterns describes how
the term is defined.

For example, pattern_is (n, to, all_only_var) denotes that the nth pa-
rameter is always a variable on the left-hand side of the definition of the term
that has the term occurrence, to. Likewise, all_constructor denotes the case
where the corresponding parameter of the definition of a particular constant al-
ways involves a data-constructor, whereas mixed denotes that the corresponding
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parameter is a variable in some clauses but involves a data-constructor in other
clauses. With these atomic assertions in mind, we write the following LiFtEr
assertion:

¬ (∃ r1 : rule. True)
→

∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.

is_recursive_constant to1
∧

∀ t2 : term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.

∃ n : number.
pattern_is (n, to1, all_constructor)

∧
is_nth_argument_of (to2, n, to1)

This roughly translates to the following English sentence:

if there is no argument in the rule field in the induct method, then
there exists a recursively defined constant, t1, with an occurrence, to1,
such that for all induction terms t2, there exists an occurrence, to2, of
t2, such that there exists a number, n, such that the nth parameter
involves a data-constructor in all the clauses of the definition of t1, and
to2 appears as the nth argument of to1 in the proof goal.

Note that we added ¬ (∃r1 : rule. True) to focus on the case where the
induct method does not take any auxiliary lemma in the rule field since this
heuristic is known to be less reliable if there is an auxiliary lemma passed to the
induct method.

LiFtEr’s interpreter confirms that Nipkow’s proof about itrev and rev con-
forms to this heuristic: there exists an occurrence of itrev, such that itrev is
recursively defined and for the only induction term, xs, there is an occurrence
of xs on the left-hand side of the proof goal, such that itrev’s first parameter
involves data-constructor in all clauses of its definition, and this occurrence of
xs appears as the first argument of the occurrence of itrev in the goal 7.

4.5 Heuristic 5. Induction terms should appear as arguments of a
function that has a related .induct rule in the rule field.

When the inductmethod takes an auxiliary lemma in the rule field that Isabelle
automatically derives from the definition of a constant, it is often true that we
should apply induction on terms that appear as arguments of an occurrence of
such constant.
7 Note that in reality the counting starts at 0 internally. Therefore, “the first argument”
in this English sentence is processed as the 0th argument within LiFtEr.
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See, for example, our alternative proof, alt_prf, for our ongoing example
theorem. When Nipkow et al. defined the itrev function with the fun keyword,
Isabelle automatically derived the auxiliary lemma itrev.induct, and the oc-
currence of itrev on the left-hand side of the equation takes xs and ys as its
arguments. Furthermore, the alternative proof passes xs and ys to the rule field
in the same order they appear as the arguments of the occurrence of itrev in
the proof goal.

We introduce is_rule_of to relate a term occurrence with an auxiliary
lemma passed to the rule field. is_rule_of takes a term occurrence and an
auxiliary lemma in the rule field of the induct method, and it checks if the rule
was derived by Isabelle at the time of defining the term. Moreover, we intro-
duce is_nth_induction_term, which allows us to specify the order of induction
terms passed to the induct method: is_nth_induction_term takes a term and
a number, and it checks if the term is passed to the induct method as the
nth induction term. Using these constructs, we can encode the aforementioned
heuristic as follows:

∃ r1 : rule. True
→

∃ r1 : rule.
∃ t1 : term.

∃ to1 : term_occurrence ∈ t1 : term.
r1 is_rule_of to1

∧
∀ t2 : term ∈ induction_term.

∃ to2 : term_occurrence ∈ t2 : term.
∃ n : number.

is_nth_argument_of (to2, n, to1)
∧
t2 is_nth_induction_term n

As a whole this LiFtEr assertion checks if the following holds:

if there exists a rule, r1, in the rule field of the induct method, then
there exists a term t1 with an occurrence to1, such that r1 is derived by
Isabelle when defining t1, and for all induction terms t2, there exists an
occurrence to2 of t2 such that, there exists a number n, such that to2 is
the nth argument of to1 and that t2 is the nth induction terms passed
to the induct method.

Our alternative proof is compatible with this heuristic: there is an argument,
itrev.induct, in the rule field, and the occurrence of its related term, itrev,
in the proof goal takes all the induction terms, xs and ys, as its arguments in
the same order.
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4.6 Heuristic 6. Generalize variables in induction terms.

Isabelle’s induct method offers the arbitrary field, so that users can specify
which terms to be generalized in induction steps; however, it is known to be a
hard problem to decide which terms to generalize.

Of course LiFtEr cannot provide you with a decision procedure to determine
which terms to generalize, but it allows us to describe heuristics to identify
variables that are likely to be generalized by experienced Isabelle users. For
example, experienced users know that it is usually a bad idea to pass induction
terms themselves to the arbitrary field. We also know that it is often a good
idea to generalize variables appearing within induction terms if induction terms
are compound terms.

We can encode the former heuristic using are_same_term, which checks if
two terms are the same term or not. For instance, we can write the following:

∀ t1 : term ∈ arbitrary_term.
¬ (∃ t2 : term ∈ induction_term. are_same_term (t1, t2))

By now, it should be easy to see that this assertion checks if the following holds:

for all terms in the arbitrary field, there is no induction term of the
same term in the induct method.

The latter heuristic involves the description of the term structure constituting
the proof goal. For this purpose we use is_in_term_occurrence to check if a
term occurrence resides within another term occurrence. With this construct,
we can encode the latter heuristic as follows:

∃ t1 : term ∈ induction_term.
∃ to1 : term_occurrence ∈ t1 : term.

∀ t2 : term.
∃ to2 : term_occurrence ∈ t2 : term.

( to2 is_in_term_occurrence to1 ∧ is_free_variable to2 )
→

∃ t3 : term ∈ arbitrary_term. are_same_term (t2, t3)

Again, we used the implication (_ → _) to avoid applying this generalization
heuristics to the cases without compound induction terms.

4.7 Apply all assertions using the test_all_LiFtErs command.

In this section we have written eight assertions (two assertions from each of
Section 4.1 and Section 4.6). To exploit all the available LiFtEr assertions, we
developed the test_all_LiFtErs command. The test_all_LiFtErs command
first takes a combination of induction arguments to the induct method. Then,
it applies all the available LiFtEr assertions to the pair of the combination of
arguments and the proof goal at hand. Finally, it counts how many assertions
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Fig. 3. The test_all_LiFtErs command.

return True. For example, the second line in Fig. 3 executed the eight available
assertions to the combination of arguments ([on["xs"], arb["ys"], rule[]])
and the proof goal. The output panel shows the result: Out of 8 assertions,
8 assertions succeeded. This indicates that the model proof by Nipkow is
indeed a good solution in terms of all the heuristics we discussed in this section.

5 Induction Heuristics Across Problem Domains

In Section 4 we wrote eight assertions in LiFtEr. When writing these eight
assertions, we emphasized that none of them is specific to the data structure list
or the function itrev appearing in the proof goal. In this section we demonstrate
that the LiFtEr assertions written in Section 4 are applicable across domains,
taking an inductive problem from a completely different domain as an example.
The following code is the formalization of a simple stack machine from Concrete
Semantics [25]:

type_synonym vname = string
type_synonym val = int
type_synonym state = "vname => val"
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"

fun exec1 :: "instr => state => stack => stack" where
"exec1 (LOADI n) _ stk = n # stk"

| "exec1 (LOAD x) s stk = s(x) # stk"
| "exec1 ADD _ (j#i#stk) = (i + j) # stk"

fun exec :: "instr list => state => stack => stack" where
"exec [] _ stk = stk"

| "exec (i#is) s stk = exec is s (exec1 i s stk)"

exec1 defines how the stack machine in a certain state transforms a given stack
into a new one by executing one instruction, whereas exec specifies how the
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machine executes a series of instructions one by one. Nipkow et al. proved the
following lemma using structural induction.

lemma exec_append_model_prf[simp]:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply(induct is1 arbitrary: stk) by auto

This lemma states that executing a concatenation of two lists of instructions
in a state to a stack produces the same stack as executing the first list of the
instructions first in the same state to the same stack and executing the second
list again in the same state again but to the resulting new stack. As in the case
with the equivalence of two reverse functions, there is also an alternative proof
based on recursion induction:

lemma exec_append_alt_prf:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply(induct is1 s stk rule:exec.induct) by auto

where exec.induct is automatically derived by Isabelle when defining exec.
Now we check if the heuristics from Section 4 correctly recommend these proofs.

Heuristic 1. Both exec_append_model_prf and exec_append_alt_prf com-
ply with this heuristic. For example, is1 is the only induction term in exec_-
append_model_prf, and it has occurrences in the proof goal, where it occurs as
a variable.

Heuristic 2. exec_append_model_prf complies with the second heuristic: its
only induction term, is1, occurs at the bottom of the syntax tree as a variable,
which is an atomic term. exec_append_alt_prf also complies with this heuristic:
is1, s, and stk as the arguments of the inner exec on the right-hand side of the
equation are all atomic terms at the deepest layer of the syntax tree.

Heuristic 3. Both proof scripts comply with this heuristic. For example, the inner
occurrence of exec on the right-hand side of the equation takes all the induction
terms of the alternative proof (namely, is1, s, and stk) as its arguments.

Heuristic 4. This heuristic works for both proof scripts, but it explains the model
answer particularly well: it has a recursively defined constant, exec, and the inner
occurrence of exec on the right-hand side of the equation has an occurrence that
takes the only induction term is1 as its first argument, and the first parameter
of exec always involve a data-constructor in the definition of exec.

Heuristic 5. This heuristic also works for both proof scripts, but it fits par-
ticularly well with the alternative answer: the rule exec.induct is derived by
Isabelle when defining exec, while exec has an occurrence as part of the third
argument of another exec on the right-hand side of the equation, and this inner
occurrence of exec takes all the induction terms (is1, s, and stk) in the same
order.
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Heuristic 6. None of our proofs involve induction on a compound term, making
the second assertion in Section 4.6 rather irrelevant, whereas the first assertion
in Section 4.6 explains the model answer well: the only generalized term, stk,
does not appear as an induction term.

6 Real World Example

In Section 4 and Section 5, we introduced simple LiFtEr assertions applied
to smaller problems. For example, all induction terms in the examples were
variables, even though Isabelle’s inductmethod can induct on non-atomic terms.

Program 2 is a more challenging proof about a formalization of an imperative
language, IMP2 [14], from the Archive of Formal Proofs [12]. Due to the space
constraints, we refrain ourselves from presenting the complete formalization of
IMP2 but focus on the essential part of the proof document.

In this project, Lammich et al. proved the equivalence between IMP2’s big-
step semantics and small-step semantics. smalls_seq in Program 2 is an auxil-
iary lemma useful to prove the equivalence. The proof of smalls_seq appears to
be somewhat similar to that of alt_prf in Section 2 and exec_append_alt_prf
in Section 5: smalls_seq’s proof uses the auxiliary lemma small_steps.induct,
which Isabelle derived automatically when Lammich et al. defined small_steps.
Furthermore, the three induction terms, π, (c, s), and Some (c’, s’), are the
arguments of one occurrence of small_steps.

The difference from the preceding examples is the generalization of four free
variables appearing in induction terms: in Program 2, c and s appear within
(c, s), while c’ and s’ appear within Some (c’, s’). As we discussed in
Section 4.6, when applying induction on non-atomic terms in Isabelle/HOL it is
often a good idea to generalize free variables appearing within such non-atomic
induction terms.

To encode such heuristic, we strengthened Example 5 in Section 4 using the
is_in_term_occurrence assertion. Program 3 checks if any induction term is
non-atomic and contains a free variable, all such free variables are generalized
in the arbitrary field. Note that LiFtEr’s interpreter evaluates the universal
quantifier over to3 to True when all induction terms are atomic, since to3 term_-
occurrence_is_of_term t3 is guarded by ¬ ( is_atomic to2 ), making this
assertion valid even for the cases where induction terms are atomic variables.

7 Conclusions, Related and Future Work

ITP has been considered as a very challenging task. To address this issue, we
presented LiFtEr. LiFtEr is a domain-specific language in the sense that we
developed LiFtEr to encode induction heuristics; however, heuristics written in
LiFtEr are often not specific to any problem domains. To the best of our knowl-
edge, LiFtEr is the first programming language developed to capture induction
heuristics across problem domains, and its interpreter is the first system that
executes meta-reasoning on interactive inductive theorem proving.
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Program 2 A Proof about the Semantics of an Imperative Language, IMP2.

datatype com =
SKIP (*No-op*)

(*Assignment*)
| AssignIdx vname aexp aexp (*Assign to index in array*)
| ArrayCpy vname vname (*Copy whole array*)
| ArrayClear vname (*Clear array*)
| Assign_Locals "vname => val" (*Assign all local variables*)
(*Block*)
| Seq com com (*Sequential composition*)
| . . .

fun small_step :: "program => com × state => (com × state) option" where
"small_step π ((AssignIdx x i a, s) =

Some (SKIP, s(x := (s x)(aval i s := aval a s)))"
| "small_step π (ArrayCpy x y, s) = Some (SKIP, s(x := s y))"
| "small_step π (ArrayClear x, s) = Some (SKIP, s(x := (λ_. 0)))"
| "small_step π (Assign_Locals l, s) = Some (SKIP, <l|s>)"
| "small_step π (SKIP ;; c, s) = Some (c, s)"
| "small_step π (c1 ;; c2, s) = (case small_step π (c1, s) of

Some (c1’, s’) => Some (c1’ ;; c2, s’) | _ => None)"
| . . .

inductive small_steps ::
"program => com × state => (com × state) option => bool" where
"small_steps π cs (Some cs)"

| "small_step π cs = None −→ small_steps π cs None"
| "small_step π cs = Some cs1 −→

small_steps π cs1 cs2 −→ small_steps π cs cs2"

lemma smalls_seq:
"small_steps π (c, s) (Some (c’, s’)) =⇒
small_steps π (c ;; cx, s) (Some (c’;; cx, s’))"

apply (induct π "(c, s)" "Some (c’, s’)"
arbitrary: c s c’ s’ rule: small_steps.induct)

apply (auto dest: small_seq intro: small_steps.intros)
by (metis option.simps(1) prod.simps(1)

small_seq small_step.simps(31) small_steps.intros(3))

The recent development in proof automation for higher-order logic takes the
meta-tool approach. Gauthier et al., for example, developed an automated tactic
prover, TacticToe, on top of HOL4 [5]. TacticToe leanrs how human engineers
used tactics and applies the knowledge to execute a tactic based Monte Carlo
tree search. To automate proofs in Coq [27], Komendantskaya et al. developed
ML4PG [13]. ML4PG uses recurrent clustering to mine a proof database and
attempts to find a tactic-based proof for a given proof goal. Both of them try to
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Program 3 An Assertion for the Generalization of Variables in Induction Terms.

∃ r1 : rule. True
→
∃ r1 : rule.
∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.

r1 is_rule_of to1
∧
∀ t2 : term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.

∃ n1 : number.
is_nth_argument_of (to2, n1, to1)

∧
t2 is_nth_induction_term n1

∧
∀ to3 : term_occurrence.

¬ ( is_atomic to2 )
∧

is_free_variable to3
∧
to3 is_in_term_occurrence to2

→
∃ t3 : arbitrary_term.
to3 term_occurrence_is_of_term t3

identify useful lemmas or hypotheses as arguments of a tactic; however, they do
not identify promising terms as arguments of a tactic even though identifying
such terms is crucial to apply induction effectively.

The most well-known approach for ITP is called the Boyer-Moore waterfall
model [17]. This approach was invented for a first-order logic on Common Lisp.
Most waterfall provers attempt to apply six proof techniques (simplification,
destructor elimination, cross-fertilization, generalization, elimination of irrele-
vance, and induction) in a fixed order, store the resulting sub-goals in a pool,
and keep applying these techniques until the pool becomes empty.

ACL2 [18] is the most commonly used waterfall model based prover, which
has achieved industrial-scale proofs [10]. When deciding how to apply induction,
ACL2 computes a score, called hitting ratio, to estimate how good each induction
scheme is for the term which it accounts for and proceeds with the induction
scheme with the highest hitting ratio [2, 19].

Compared to the hitting ratio used in the waterfall model, LiFtEr’s atomic
assertions let us analyze the structures of proof goals directly while LiFtEr’s
quantifiers let us keep LiFtEr assertions non-specific to any problem. While
ACL2 produces many induction schemes and computes their hitting ratios,
LiFtEr assertions do not directly produce induction schemes but analyze the
given proof goal and the arguments passed to the induct method, re-using Is-
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abelle’s existing tool to (implicitly) produce induction principles. We consider
LiFtEr’s approach to be a reasonable choice, since it extends the usability of the
already well-developed proof assistant, Isabelle/HOL, while avoiding to reinvent
the mechanism to produce induction principle.

Furthermore, the choice of Isabelle/HOL as the host system of LiFtEr al-
lowed us to take advantage of human interaction more aggressively both from
Isabelle experts and new Isabelle users: Isabelle experts can encode their own
heuristics since LiFtEr is a language, and new Isabelle users can inspect the
results of LiFtEr assertions and decide how to attack their proof goals instead
of following the fixed order of six proof techniques as in the waterfall model.

Heras et al. used ML4PG learning method to find patterns to generalize and
transfer inductive proofs from one domain to another in ACL2 [8]. Jiang et al.
followed the waterfall model and ran multiple waterfalls [9] to automate ITP in
HOL light [7]. However, when deciding induction variables, they naively picked
the first free variable with recursive type and left the selection of appropriate
induction variables as future work.

To determine induction variables automatically, we developed a proof strat-
egy language PSL and its default proof strategy, try_hard for Isabelle/HOL [23].
PSL tries to identify useful arguments for the induct method by conducting a
depth-first search. Sometimes it is not enough to pass arguments to the induct
method, but users have to specify necessary auxiliary lemmas before applying
induction. To automate such labor-intensive work, PGT [24], a new extension to
PSL, produces many lemmas by transforming the given proof goal while trying
to identify a useful one in a goal-oriented manner.

The drawback of PSL and PGT is that they cannot produce recommendations
if they fail to complete a proof search: when the search space becomes enormous,
neither PSL and PGT gives any advice to Isabelle users.

PaMpeR [22], on the other hand, recommends which proof method is likely to
be useful to a given proof goal, using a supervised learning applied to the Archive
of Formal Proofs [12]. The key of PaMpeR was its feature extractor: PaMpeR first
applies 108 assertions to each invocation of proof methods and converts each pair
of a proof goal with its context and the name of proof method applied to that
goal into an array of boolean values of length 108 because this simpler format is
amenable for machine learning algorithms to analyze. The limitation of PaMpeR
is, unlike PSL, it cannot recommend which arguments in the induct method to
tackle a given proof goal.

Taking the same approach as PaMpeR, we attempted to build a recommen-
dation tool, MeLoId [21], to automatically suggest promising arguments for the
induct method without completing a proof: we wrote many assertions in Is-
abelle/ML. Unfortunately, encoding induction heuristics as assertions directly
in Isabelle/ML caused an immense amount of code-clutter, and we could not
encode even the human-friendly notion of depth in syntax tree since multi-arity
functions are represented as curried functions in Isabelle. Therefore, we devel-
oped LiFtEr, expecting that LiFtEr serves as a language for feature extraction.



20 Y. Nagashima

We hope that when combined into the supervised learning framework of
MeLoId, assertions written in LiFtEr extract the essence of induction in Is-
abelle/HOL in a cross-domain style and produce a useful database for machine
learning algorithms, so that new Isabelle users can have the recommendation of
promising arguments for the induct method in a fully automatic way.
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