Skip to main content

Uniform Random Process Model Revisited

  • Conference paper
  • First Online:
Book cover Programming Languages and Systems (APLAS 2019)

Abstract

Recently, a proper bisimulation equivalence relation for random process model has been defined in a model independent approach. Model independence clarifies the difference between nondeterministic and probabilistic actions in concurrency and makes the new equivalence relation to be congruent. In this paper, we focus on the finite state randomized \(\text {CCS} \) model and deepen the previous work in two aspects. First, we show that the equivalence relation can be decided in polynomial time. Second, we give a sound and complete axiomatization system for this model. The algorithm and axiomatization system also have the merit of model independency as they can be easily generalized to the randomized extension of any finite state concurrent model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andova, S.: Process algebra with probabilistic choice. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 111–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-6_7

    Chapter  Google Scholar 

  2. Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: Acp with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)

    Article  MathSciNet  Google Scholar 

  3. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_14

    Chapter  Google Scholar 

  4. Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_31

    Chapter  Google Scholar 

  5. Deng, Y.: Semantics of Probabilistic Processes: An Operational Approach. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45198-4

    Book  Google Scholar 

  6. Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5_7

    Chapter  Google Scholar 

  7. Fu, Y.: Checking equality and regularity for normed BPA with silent moves. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 238–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_23

    Chapter  Google Scholar 

  8. Fu, Y.: A uniform approach to random process model (2019). https://arxiv.org/pdf/1906.09541.pdf

  9. Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP TC2 Working Conference on Programming Concepts and Methods. Citeseer (1990)

    Google Scholar 

  10. Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokołowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-5_39

    Chapter  Google Scholar 

  11. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

    Article  MathSciNet  Google Scholar 

  12. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)

    Article  MathSciNet  Google Scholar 

  13. Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability. In: Proceedings of Real-Time Systems Symposium, pp. 102–111. IEEE (1989)

    Google Scholar 

  14. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of 11th Real-Time Systems Symposium, pp. 278–287. IEEE (1990)

    Google Scholar 

  15. Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous \(\pi \)-calculus. In: Tiuryn, J. (ed.) FoSSaCS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46432-8_10

    Chapter  Google Scholar 

  16. Huang, M., Yin, Q.: Two lower bounds for BPA. In: 28th International Conference on Concurrency Theory, CONCUR 2017, 5–8 September 2017, Berlin, Germany, pp. 20:1–20:16 (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.20

  17. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039071

    Chapter  Google Scholar 

  18. Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: techniques and results. Theory Pract. Logic Programm. 6(3), 227–264 (2006)

    Article  MathSciNet  Google Scholar 

  19. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  20. Lowe, G.: Probabilities and priorities in timed CSP (1993)

    Google Scholar 

  21. Milner, R.: Communication and Concurrency, vol. 84. Prentice hall, New York (1989)

    Google Scholar 

  22. Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Inf. Comput. 81(2), 227–247 (1989)

    Article  MathSciNet  Google Scholar 

  23. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_25

    Chapter  Google Scholar 

  24. Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Proof, Language, and Interaction, pp. 571–596 (2000)

    Google Scholar 

Download references

Acknowledgement

We are grateful to Prof. Yuxi Fu for his instructive discussions and feedbacks. We thank Dr. Mingzhang Huang, Dr. Qiang Yin and other members of BASICS for offering helps in the revision stage. We also thank the anonymous referees for their questions and detailed comments. The support from the National Science Foundation of China (61772336, 61872142, 61572318) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbo Zhang , Huan Long or Xian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Long, H., Xu, X. (2019). Uniform Random Process Model Revisited. In: Lin, A. (eds) Programming Languages and Systems. APLAS 2019. Lecture Notes in Computer Science(), vol 11893. Springer, Cham. https://doi.org/10.1007/978-3-030-34175-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34175-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34174-9

  • Online ISBN: 978-3-030-34175-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics