
Detecting Fraudulent Accounts on Blockchain:
A Supervised Approach

Micha l Ostapowicz and Kamil Żbikowski

Institute of Computer Science
Faculty of Electronics and Information Technology

Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

michal.ostapowicz.stud@pw.edu.pl kamil.zbikowski@ii.pw.edu.pl

Abstract. Applications of blockchain technologies got a lot of atten-
tion in recent years. They exceed beyond exchanging value and being a
substitute for fiat money and traditional banking system. Nevertheless,
being able to exchange value on a blockchain is at the core of the entire
system and has to be reliable. Blockchains have built-in mechanisms that
guarantee whole system’s consistency and reliability. However, malicious
actors can still try to steal money by applying well known techniques like
malware software or fake emails. In this paper we apply supervised learn-
ing techniques to detect fraudulent accounts on Ethereum blockchain. We
compare capabilities of Random Forests, Support Vector Machines and
XGBoost classifiers to identify such accounts basing on a dataset of more
than 300 thousands accounts. Results show that we are able to achieve
recall and precision values allowing for the designed system to be appli-
cable as an anti-fraud rule for digital wallets or currency exchanges. We
also present sensitivity analysis to show how presented models depend
on particular feature and how lack of some of them will affect the overall
system performance.

Keywords: blockchain, anti-fraud, supervised, xgboost, random forests, svm,
ethereum

1 Introduction

Recent developments in digital currencies gave birth not only to a completely new
way of exchanging value, but also to such areas like distributed trust manage-
ment. Those advances may replace traditional notary services or payment pro-
cessing companies in the near future [12]. Such advances are possible to achieve
thanks to technology called blockchain that, in its basis, is as an immutable,
distributed database. First public blockchain, called Bitcoin, was launched in
2009 and, not surprisingly, from the very beginning attracted fraudulent actors
that tried to take advantage of other participants. These actors very often try
to convince others to send them digital currency to their accounts by using

ar
X

iv
:1

90
8.

07
88

6v
1

 [
cs

.C
R

]
 2

1
A

ug
 2

01
9

2 Micha l Ostapowicz and Kamil Żbikowski

different techniques like malware or fake emails. Due to the publicly available
data, information about account once denoted as fraudulent can be shared and
available without limitations. Quite contrary to traditional financial systems, all
the transfers to and from such account can be freely viewed and analyzed. The
availability of this data gives us an opportunity to verify if there is a mean-
ingful relation between operations done on the account and this account being
fraudulent.

In this paper, we propose a novel approach for detecting fraudulent accounts
on Ethereum network. Ethereum is a blockchain that has some significant im-
provements over Bitcoin [5]. Those improvements allow to write and execute
contracts (called smart contracts) more easily. These contracts give an oppor-
tunity for many different actors to engage in complex agreements that are fully
executable and can be verified with the use of the underlying protocol. More
details on Ethereum can be found in [11].

In the first stage, we automatically gathered available data about accounts
and transactions. Then, we created explanatory variables out of raw data. They
represent aggregates and statistics computed over volumes and time. In the next
stage, we tested three classifiers and compared their results in the context of
possible applications. They can strongly depend on different use cases that may
put more importance on precision than on recall or the other way round. The
contribution of this study can be summarized as follows:

– We proposed a novel approach for identifying fraudulent accounts on Etherum
blockchain that is easily transferable to other blockchains, like Bitcoin.

– We conducted a thorough analysis of three different machine learning algo-
rithms for the task of classification accounts to “fraudulent” or “not fraud-
ulent” class.

– We conducted a sensitivity analysis in order to verify how much we depend
on particular explanatory variables. This is a test that allow us to address
the potential problem of a look-ahead bias that may or may not exist within
the data that we gathered.

2 Related work

Detecting fraudulent activity in financial operations is a well known problem.
Both researchers and practitioners put a lot of attention to developing new tools
that would correctly identify new attack vectors. This is an endless battle in
which both sides use their creativity and new technologies. A comprehensive
survey on fraud detection techniques can be found in [8]. More recent surveys
on fraud prevention systems and detecting financial fraud through data mining
algorithms can be found in [1] and [2] respectively.

Quah and Sriganesh [10] used Self Organizing Maps (SOM) to detect credit
card frauds. They took an approach that if a transaction is similar to all trans-
actions in a set of genuine transactions, it is also considered genuine. On the
other hand, if it looks like any of the transactions in a set of fraudulent, then
it is also considered fraudulent. In addition to the basic task of clustering input

Abbreviated paper title 3

data, Self Organizing Maps are also used to detect and extract hidden patterns.
According to the authors, in real financial systems that verify each transaction
on multiple layers, SOM may also serve as a filter for the layers following it. In
the case described by the authors, SOM receives an input data vector consisting
of client, account and transaction features.

In [6] authors used supervised learning methods to tackle similar problem.
They used logistic regression, Support Vector Machine (SVM) and random for-
est. Apart from using typical transaction features as an algorithm’s input (e.g.
order value, type of items ordered, payment method), through abstraction and
combination they engineered several new variables such as binary evaluated com-
pliance of the country of the card transaction with the country to which the
purchased items are to be delivered. Eventually, the authors used 71 features to
describe each transaction. The best results were obtained using random forest
method, which is why it was used in further analysis. As it turned out, despite
quite good results in recognizing frauds, they were not good enough to fully
automate verification of transactions.

In case of transfers done through blockchain transactions, fraud detection
can be a more complicated task as most of the time we are not in possession of
geographical and personal data of participants. Pham and Lee [9] in their article
dealt with detecting frauds in the Bitcoin network. The network data was mod-
eled as two graphs: a user graph and a transaction graph which were used to
detect anomalies (e.g. fraudulent and suspicious users). They had information
about 30 cases of theft in the Bitcoin network, which were later used to ver-
ify their results. In both graphs, each vertex was represented with 12 features,
such as the input and output stage, the average time between transactions, the
creation date and activity time. As the first step in the analysis they applied
k-means algorithm to group all graph nodes. As the authors pointed out, this
algorithm is not used to find anomalies, but it may be useful, because the points
that diverge from the rest are expected to be found far from the centroids calcu-
lated with k-means algorithm. They wanted to investigate if anomalies in user
graph, clearly refer to anomalies in the transaction graph, i.e. whether ”sus-
picious” users were involved in ”suspicious” transactions. To find anomalies in
these groups authors used a method based on the Mahalanobis distance and
Support Vector Machine (SVM). Suspected users and transactions indicated by
both algorithms overlapped to a large degree. In both methods extreme values
were indicated as suspicious, i.e. vertices with the largest or smallest degrees.
That approach allowed to detect two authentic anomalies: one theft (detected
by the Mahalanobis distance based method) and one loss caused by a corruption
in a hashing function (detected by the SVM). These results do not seem to be
statistically significant primarily due to a limited number of known thefts (or
anomalies in general).

4 Micha l Ostapowicz and Kamil Żbikowski

3 Methodology

3.1 Data preparation

The data used in the analysis came from the Etherscan.io website, which is one of
the most popular Ethereum blockchain browsers. It provides information about
all transactions in the network, mined blocks and user accounts. Over 2 500 wal-
lets were reported by the users as related to illegal activities and marked as
”Hack/Phishing”. Using the Etherscan API it was possible to download infor-
mation about all transactions in which given wallet participated. Some of the
wallets tagged as fraudulent had no transactions at all or were involved mostly in
ERC20 token trade. They were not included in the dataset. After this correction
we analyzed 2 200 wallets marked as involved in illegal activity. In addition to
fraudulent transactions data, we also collected information about transactions
from 349 999 randomly selected wallets out of the 65 564 460 existing (as of 28th
May 2019) in the Ethereum network. They were not marked as suspicious and
were considered non-fraudulent.

Based on the work of [9] we decided to create 13 explanatory variables con-
cerning transaction data of each account. Explanatory variables are presented
in table 1. The dataset was divided into two parts: a training set with 281 760

Table 1. Explanatory variables

Variable name Variable description

IT amount of incoming transactions
OT amount of outgoing transactions
UIT amount of unique incoming transactions
UOT amount of unique outgoing transactions
AVIT average value of the incoming transaction
AVOT average value of the outgoing transaction
VIT total value of all incoming transactions
VOT total value of all outgoing transactions
ATIT average time between incoming transactions
ATOT average time between outgoing transactions
AGP average gas price
AGL average gas limit
DUR active duration (time in days since the first until the last transaction)

samples and a validation set with 70 439 samples.

3.2 Experiment setup

The prediction problem definition here is a classic example of a binary classifi-
cation. We examined following classifiers: Random Forests, Support Vector Ma-
chines and XGBoost in order to determine their capabilities of making accurate
predictions for a given dataset. Figure 1 presents data and system architecture

Abbreviated paper title 5

for the conducted experiment. As a first step we downloaded data using the
Etherscan API, which then was aggregated to create 13 variables presented in
the Table 1. In the next step, using grid search with 10-fold cross-validation
we tried to find set of parameters that could give the best results for the three
supervised learning algorithms that we chose.

Data gathered from Etherscan did not allow to accurately determine the
moment of marking particular account as a fraudulent one. It can be possible
that certain aggregates that we use for training are biased and data used to
compute them was gathered after the moment of marking a particular account
as fraudulent. It is possible that some of the transactions can be a result of
the public exposure of an account. This would not be a problem if were only
interested in devising a method for simple classification of account. However, if
we would like to use proposed method as an early warning system then we will
have to take a moment of an exposure into consideration. We address this issue
by conducting performance analysis after removing most important explanatory
variables. As the final step we did a validation check on a part of a dataset that
was not used for the training purposes. Result from this step were reported in
the following sections.

Fig. 1. System and data architecture for the conducted experiment

3.3 Prediction models

The Support Vector Machine (SVM) classifier is a binary classifier algorithm
that looks for an optimal hyperplane as a decision function in a high-dimensional

6 Micha l Ostapowicz and Kamil Żbikowski

space [3]. Having a training dataset {xk, yk} ∈ IRn × {−1, 1} where xk are the
training examples and yk are the class labels at first we map x into a higher
dimensional space via a function Φ, then computing a decision function in the
form of:

f(x) = 〈w, Φ(x)〉+ b (1)

by maximizing the distance between the set of points Φ(xk) to the hyperplane
parameterized by (w, b). The class label of x is given by the sign of f(x). The op-
timization problem for the SVM classifier with penalized misclassified examples
can be written as:

min
w,ξ

1

2
||w||2 +

m∑
i=1

Cξi, (2)

subject to:
yif(xi) ≥ 1− ξi, (3)

With variables αi defined such that:

w =

m∑
i

αiyixi, (4)

by solving for the Lagrangian dual of the problem 2, we obtain the simplified
problem:

max
α

Q(α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjϕ(xi)ϕ(xj) (5)

subject to:
m∑
i=1

αiyi = 0, (6)

αi ≥ 0. (7)

Random Forest is a classifier consisting of a collection of tree-structured
classifiers {h(x, Θk), k = 1, ...} where {Θk} the are independent identically dis-
tributed random vectors and each tree casts a unit vote for the most popular
class at input. [4] For each tree in the random forest new training set is generated,
by drawing with replacement from the original training set. Tree is grown on the
new training set using random feature selection at each node. The resulting trees
are not pruned.

XGBoost is a scalable machine learning system for tree boosting proposed by
Chen and Guestrin [7]. The impact of this system has been lately recognized in
a number of machine learning and data mining challenges. For example, among
the 29 challenge winning solutions published at Kaggle’s blog during 2015, 17
solutions used XGBoost.

Considering training dataset {xk, yk} ∈ IRn×{−1, 1} where xk are the train-
ing examples, yk are the class labels and n is number of features, the output of
model is voted or averaged by a collection F of k regression trees:

ŷi = φ(xi) =

k∑
i=1

fk(xi), fk ∈ F (8)

Abbreviated paper title 7

Each regression tree contains a continuous score on each of the leaves (wi rep-
resents score on the i-th leaf). To learn the set of functions used in the model,
the following objective needs to be minimized

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (9)

l is the training loss function which measures how well the model fits on training
data. The second term Ω penalizes the complexity of the model and is defined
as:

Ω(f) = γT +
1

2
λ||w||2 (10)

where the γ is the complexity of each leaf, T is the number of leaves in a decision
tree and λ is a parameter to scale the penalty. If we apply the second-order
Taylor expansion to the loss function and remove the constant terms we obtain
the objective at the t-th iteration in the form of:

L̃(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] +Ω(ft) (11)

where gi and hi are respectively first and second derivative of the loss function.

4 Empirical results

Our objective was to find a prediction model that could be used as a real-world
fraud detection system. Due to the high class imbalance we decided to focus our
assessment of a particular algorithm on analyzing recall and precision statistics.
For different parameters configurations we obtained results with either high recall
and low precision or low recall and high precision. The former one has an obvious
advantage of capturing most of the frauds that were present in a dataset. On
the other hand, it is completely useless for a real world applications in which all
the alerts have to be manually analyzed by a human being.

As we included almost all of the fraudulent transaction and only minor sample
of non-fraudulent, we had distribution in which probability of a random account
being a fraudulent one was significantly higher than in the real-world. Because of
that, we could not rely on precision statistic as it is vulnerable to this problem.
Instead of using precision as a false alarm verification cost estimator we decided
to use false positive rate. It fits our purpose since it does not depend on the total
amount of frauds in the dataset.

4.1 Random forest results

For random forest we decided to tune number of variables randomly sampled as
candidates at each split (mtry), minimum size of terminal nodes (min.node.size)
and different cut-off probabilities i.e. probability above which sample is actually
predicted as a non-fraud.

8 Micha l Ostapowicz and Kamil Żbikowski

As we can see in Table 2 biggest impact on the results has threshold which
determines final predicted class. Larger threshold causes less samples to be clas-
sified as non-fraud and therefore an increase of recall and at the same time
increase in FPR which we would like to keep low.

Instead of choosing one configuration which would be a trade-off between
recall and false positive rate, we decided to distinguish classifiers able to find as
many actual fraudulent accounts as possible (maximizing recall) and a classifiers
that make as few mistakes in predicting fraud class as possible (minimizing false
positive rate). Validation results presented in Table 2, are similar to the ones
we got with cross-validation and confirm, the best configurations are: Conf. 3
in terms of FPR and Conf. 19 in terms of recall. For chosen configurations of
random forest we created confusion matrices (presented in tables 3 and 4) that
help to better analyze performance of this classifier on the dataset that is highly
imbalanced.

Table 2. Validation results for random forests

Configuration Value Cross-validation results [%]
mtry min.node.size probability Specificity Recall Precision FPR F1

Conf.1 3 1 0.5 99.97 24.36 83.33 0.03 37.7
Conf.2 6 1 0.5 99.96 25.52 80.29 0.04 38.73
Conf.3 3 10 0.5 99.98 23.67 85.71 0.02 37.09
Conf.4 6 10 0.5 99.97 24.59 83.46 0.03 37.99
Conf.5 3 1 0.65 99.93 30.16 72.63 0.07 42.62
Conf.6 6 1 0.65 99.92 32.02 70.41 0.08 44.02
Conf.7 3 10 0.65 99.94 30.16 76.47 0.06 43.26
Conf.8 6 10 0.65 99.93 32.02 72.63 0.07 44.44
Conf.9 3 1 0.8 99.79 42 55.35 0.21 47.76
Conf.10 6 1 0.8 99.73 44.08 50 0.27 46.86
Conf.11 3 10 0.8 99.81 41.76 57.32 0.19 48.32
Conf.12 6 10 0.8 99.75 44.32 52.47 0.25 48.05
Conf.13 3 1 0.9 99.31 54.06 32.5 0.69 40.59
Conf.14 6 1 0.9 99.19 54.52 29.3 0.81 38.12
Conf.15 3 10 0.9 99.34 54.52 33.76 0.66 41.7
Conf.16 6 10 0.9 99.24 55.22 30.95 0.76 39.67
Conf.17 3 1 0.99 90.67 83.53 5.22 9.33 9.83
Conf.18 6 1 0.99 90.79 83.06 5.26 9.21 9.89
Conf. 19 3 10 0.99 90.31 84.92 5.12 9.69 9.65
Conf.20 6 10 0.99 90.63 83.29 5.19 9.37 9.77

4.2 Support Vector Machine results

For the purpose of training Support Vector Machines we chose the radial basis
function as a kernel and additionally we increased cost of misclassifying samples
to better address the problem of class imbalance in the dataset. The tuned pa-
rameters were: cost of constraints violation (cost) and kernel parameter gamma.

Abbreviated paper title 9

Table 3. Confusion matrix for Conf. 3
Random forest

Actual value

Prediction fraud non-fraud Total

fraud 102 17 119

non-fraud 329 69991 70320

Total 431 70008 70439

Table 4. Confusion matrix for
Conf. 19 Random forest

Actual value

Prediction fraud non-fraud Total

fraud 366 6786 7152

non-fraud 65 63222 63287

Total 431 70008 70439

As shown in Table 5 SVM achieved high recall, but with quite low precision
for almost all configurations. If we only consider recall, Conf 1. was better than
random forests’ Conf 19. with significantly higher false positive rate. Actually,
no set of parameters was able to get false positive rate lower than 10%. If we
also had to choose configuration with the lowest FPR, Conf. 20 would be the
best candidate.

Table 5. Validation results for SVM

Configuration Value Cross-validation results [%]
cost gamma Specificity Recall Precision FPR F1

Conf 1. 1 0.077 72.62 87.47 1.93 27.38 3.77
Conf 2. 1 0.100 75.03 86.77 2.09 24.97 4.09
Conf 3. 1 0.500 79.52 84.69 2.48 20.48 4.82
Conf 4. 1 1.000 84.38 83.99 3.20 15.62 6.17
Conf 5. 1 2.000 85.84 82.60 3.47 14.16 6.65
Conf 6. 5 0.077 76.78 84.92 2.20 23.22 4.29
Conf 7. 5 0.100 77.72 84.92 2.29 22.28 4.47
Conf 8. 5 0.500 84.00 83.99 3.13 16.00 6.04
Conf 9. 5 1.000 85.60 83.76 3.46 14.40 6.64
Conf 10. 5 2.000 87.38 79.35 3.72 12.62 7.12
Conf 11. 10 0.077 77.64 84.69 2.28 22.36 4.44
Conf 12. 10 0.100 78.33 85.38 2.37 21.67 4.61
Conf 13. 10 0.500 85.07 83.29 3.32 14.93 6.39
Conf 14. 10 1.000 85.99 83.06 3.52 14.01 6.76
Conf 15. 10 2.000 88.00 76.80 3.79 12.00 7.23
Conf 16. 50 0.077 78.87 85.15 2.42 21.13 4.71
Conf 17. 50 0.100 79.44 85.15 2.49 20.56 4.83
Conf 18. 50 0.500 86.09 83.06 3.55 13.91 6.80
Conf 19. 50 1.000 87.35 80.05 3.75 12.65 7.17
Conf 20. 50 2.000 89.41 75.87 4.23 10.59 8.01

10 Micha l Ostapowicz and Kamil Żbikowski

4.3 XGBoost results

In case of XGBoost we analyzed following hyperparameters in different con-
figurations: maximum depth of a tree (max.depth), minimum sum of instance
weight needed in a child (min.child.weight), subsample ratio of columns when
constructing each tree (colsample) and, as in random forests, cut-off probability.
As for the training itself, we set maximum number of iterations to 2000 with
learning rate parameter set to 0.1 using early stop if error does not decrease in
100 consecutive iterations.

Even though we built classifiers for 240 combinations of hyperparameters
we decided to present only 20 most interesting. In Table 6 Conf. 1 - Conf. 10
have the smallest false-positive rate and the other 10 configurations have signif-
icantly larger recall. Looking at the classification results we can draw a similar
conclusion as in the case of random forest - cut-off probability is the most im-
portant parameter for the outcome. After examining the other parameters we
were not able to clearly describe their exact impact for the results. As shown in
Table 6 validation results confirmed, Conf. 1 and Conf. 16 being the best in their
categories, but slightly worse than the best two random forest configurations.

Table 6. Validation results for XGBoost

Configuration Value Cross-validation results [%]
max.depth colsample min.c.w prob. Specificity Recall Precision FPR F1

Conf 1. 6 0.25 1 0.50 99.95 31.32 78.03 0.05 44.70
Conf 2. 9 0.25 1 0.50 99.95 30.16 78.30 0.05 43.55
Conf 3. 3 0.25 2 0.50 99.94 31.32 76.27 0.06 44.41
Conf 4. 3 0.25 1 0.50 99.95 32.02 78.41 0.05 45.47
Conf 5. 3 0.50 1 0.50 99.94 32.71 77.05 0.06 45.93
Conf 6. 6 0.50 1 0.50 99.94 32.02 76.24 0.06 45.10
Conf 7. 9 0.50 1 0.50 99.94 32.48 76.09 0.06 45.53
Conf 8. 3 0.75 1 0.50 99.95 33.18 79.89 0.05 46.89
Conf 9. 6 0.75 1 0.50 99.94 31.32 77.14 0.06 44.55
Conf 10. 9 0.75 1 0.50 99.94 32.71 77.05 0.06 45.93
Conf 11. 3 0.50 8 0.99 93.79 79.35 7.30 6.21 13.36
Conf 12. 3 0.25 8 0.99 93.58 80.51 7.16 6.42 13.16
Conf 13. 3 0.25 4 0.99 93.74 80.05 7.30 6.26 13.37
Conf 14. 3 0.50 4 0.99 93.99 79.58 7.54 6.01 13.77
Conf 15. 3 1.00 4 0.99 94.20 78.42 7.68 5.80 14.00
Conf 16. 3 1.00 8 0.99 93.89 80.51 7.50 6.12 13.72
Conf 17. 3 0.25 1 0.99 93.97 78.89 7.45 6.03 13.61
Conf 18. 3 0.75 8 0.99 93.83 79.58 7.35 6.17 13.46
Conf 19. 3 0.25 2 0.99 93.91 79.81 7.47 6.09 13.66
Conf 20. 3 0.75 4 0.99 94.05 80.05 7.65 5.95 13.96

4.4 Sensitivity analysis

Decision to conduct sensitivity analysis was motivated by our inability to indicate
the exact moment of the marking any particular account as fraudulent and

Abbreviated paper title 11

thus aggregated transactions data might be contaminated with transactions that
happened after an alert on Etherscan has been raised for a particular account.
This may lead to look-ahead bias since we are using data that was unknown at
the moment of detecting a fraudulent account. In our approach we investigated
what impact on the quality of the classifiers excluding the most important and
potentially biased variables might have.

Importance of considered variables is not as easily determined when using
SVM as in random forest or XGBoost. Furthermore, none of the SVM results
was as satisfactory (in terms of recall) as the best of random forests or XGBoost.
These two observations led to omission of SVM in our sensitivity analysis.

Explanatory variables importances were calculated separately for each of the
best configurations and are presented in the Figure 2.

Considering random forests variable importance (sometimes called ”gini im-
portance”) is defined as the total decrease in node impurity weighted by the
probability of reaching that node averaged over all trees in the forest. Impurity
is defined as:

G =

C∑
i=1

p(i) ∗ (1− p(i)) (12)

with C being the number of classes and p(i) being the probability of picking a
datapoint with class i.

In case of XGBoost relative variable importance is measured as the Gain
which is contribution of the corresponding feature to the model calculated by
taking each feature’s contribution for each tree in the model. If we define Gj =∑
i∈Ij gi and Hj =

∑
i∈Ij hi (based on the Equation 11) where Ij is the set of

indices of data points assigned to the j-th leaf, we can express Gain as:

Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
+

(GL +GR)2

HL +HR + λ
]− γ (13)

This formula can be decomposed as 1) the score on the new left leaf 2) the score
on the new right leaf 3) The score on the original leaf 4) regularization on the
additional leaf.

As we can see in Fig. 2 the most important variables for each classifier are
usually connected with the incoming and the least important with the outgoing
transactions. The only variable that is either first or second in terms of im-
portance for all three classifiers is average time between incoming transactions.
For the XGBoost we decided to apply a minor change to the chosen configura-
tions. Instead of stopping after having no decrease of error in 100 consecutive
iterations, XGBoost would do 2000 iterations regardless of the results.

As presented in Tables 7 and 8 random forest turned out to be more resistant
to cutting off important variables. Even though false positive rate for Conf. 19
is high, with 8 variables excluded we are still able to detect almost 70% of all
frauds.

12 Micha l Ostapowicz and Kamil Żbikowski

Fig. 2. Variable importance for: a) XGBoost Conf. 1, b) XGBoost Conf. 16, c) Random
Forest Conf. 3

Table 7. Validation results for random forests with n most important variables ex-
cluded

Validation results [%]
Specificity Recall Precision FPR F1

Conf. 3 (n = 2) 99.98 15.55 81.71 0.02 26.12
Conf. 3 (n = 4) 99.98 14.62 84 0.02 24.90
Conf. 3 (n = 8) 99.98 7.66 71.74 0.02 13.84
Conf. 19 (n = 2) 89.52 82.37 4.62 10.48 8.74
Conf. 19 (n = 4) 89.38 81.67 4.52 10.62 8.57
Conf. 19 (n = 8) 88.66 68.91 3.60 11.34 6.86

Table 8. Validation results for XGBoost with n most important variables excluded

Validation results [%]
Specificity Recall Precision FPR F1

Conf. 1 (n = 2) 99.95 26.68 75.16 0.05 39.38
Conf. 1 (n = 4) 99.95 17.63 68.46 0.05 28.04
Conf. 1 (n = 8) 99.98 2.78 54.55 0.02 5.30
Conf. 16 (n = 2) 92.66 76.33 6.02 7.34 11.15
Conf. 16 (n = 4) 90.69 71.46 4.51 9.31 8.49
Conf. 16 (n = 8) 87.03 62.41 2.88 12.97 5.50

Abbreviated paper title 13

5 Conclusions and future work

Due to the significant developments in blockchain technology, dedicated fraud
prevention systems are an important area of research. We proposed a machine
learning based method for predicting whether a particular account on Ethereum
blockchain might be fraudulent.

Three different classifiers were analyzed and out of them Random Forest
obtained the best results in terms of recall and false positive rate separately,
having the other statistics at the reasonable level (in one of the configurations
SVM had the best recall for the validation set but at the same time it had three
times worse false positive rate).

Best recall for Random Forest was 84.92%. It did not justify using this model
in any real-world anti-fraud system. The reason was significant amount of type
I error being made by that classifier where almost 10% percent of all accounts
would be alerted.

Configuration 3 for Random Forest that achieved 0.02% of false positive rate
was still able to detect 23.67% of all frauds. This result can be perceived as a
good candidate for an automated anti-fraud system. If we would like to deploy
such a system on any cryptocurrency exchange or within cryptocurrency wallet
we will mark as fraudulent one in five thousands accounts.

As for future work, we would like to obtain data from exchanges that will
help determine whether proposed method can be applied in the current form or
is needing further enhancements.

Conducted sensitivity analysis showed that proposed model are not too sen-
sitive for particular explanatory variables but one of future research directions
may include estimating exact moments of marking particular account as fraud-
ulent. Then, we would not take a risk of our training set being vulnerable to
look-ahead bias.

References

1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: A survey. Journal
of Network and Computer Applications 68, 90–113 (2016)

2. Bhardwaj, A., Gupta, R.: Financial frauds: Data mining based detection–a com-
prehensive survey. International Journal of Computer Applications 156(10) (2016)

3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning
theory. pp. 144–152. ACM (1992)

4. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
5. Buterin, V., et al.: A next-generation smart contract and decentralized application

platform. white paper (2014)
6. Carneiro, N., Figueira, G., Costa, M.: A data mining based system for

credit-card fraud detection in e-tail. Decision Support Systems 95, 91 –
101 (2017). https://doi.org/https://doi.org/10.1016/j.dss.2017.01.002, http://

www.sciencedirect.com/science/article/pii/S0167923617300027

7. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. CoRR
abs/1603.02754 (2016), http://arxiv.org/abs/1603.02754

https://doi.org/https://doi.org/10.1016/j.dss.2017.01.002
http://www.sciencedirect.com/science/article/pii/S0167923617300027
http://www.sciencedirect.com/science/article/pii/S0167923617300027
http://arxiv.org/abs/1603.02754

14 Micha l Ostapowicz and Kamil Żbikowski

8. Kou, Y., Lu, C.T., Sirwongwattana, S., Huang, Y.P.: Survey of fraud detection
techniques. In: IEEE International Conference on Networking, Sensing and Con-
trol, 2004. vol. 2, pp. 749–754. IEEE (2004)

9. Pham, T., Lee, S.: Anomaly detection in bitcoin network using unsupervised
learning methods. CoRR abs/1611.03941 (2016), http://arxiv.org/abs/1611.
03941

10. Quah, J.T., Sriganesh, M.: Real-time credit card fraud detection using com-
putational intelligence. Expert Systems with Applications 35(4), 1721 – 1732
(2008). https://doi.org/https://doi.org/10.1016/j.eswa.2007.08.093, http://www.

sciencedirect.com/science/article/pii/S0957417407003995

11. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

12. Wörner, D., Von Bomhard, T., Schreier, Y.P., Bilgeri, D.: The bitcoin ecosystem:
disruption beyond financial services? (2016)

http://arxiv.org/abs/1611.03941
http://arxiv.org/abs/1611.03941
https://doi.org/https://doi.org/10.1016/j.eswa.2007.08.093
http://www.sciencedirect.com/science/article/pii/S0957417407003995
http://www.sciencedirect.com/science/article/pii/S0957417407003995

	Detecting Fraudulent Accounts on Blockchain: A Supervised Approach

