Skip to main content

Locking Mechanism for Concurrency Conflicts on Hyperledger Fabric

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Abstract

Hyperledger Fabric is a popular permissioned blockchain platform and has great commercial application prospects. However, the limited transaction throughput of Hyperledger Fabric hampers its performance, especially when transactions with concurrency conflicts are initiated. In this paper, we focus on transactions with concurrency conflicts and propose a novel method LMLS, which contains the following two components, to optimize the performance of Hyperledger Fabric. Firstly, we design a locking mechanism to discovery conflicting transactions at the beginning of the transaction flow. Secondly, we optimize the ledger storage based on the locking mechanism, where the database indexes corresponding to conflicting transactions are changed and temporally stored in ledger to improve the processing efficiency. Extensive experiments conducted on three datasets demonstrate that the proposed novel methods can significantly increase transaction throughput in the case of concurrency conflicts, and maintain high efficiency in transactions without concurrency conflicts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chaincodes. http://hyperledger-fabric.readthedocs.io/en/release-1.2/chaincode4noah.html

  2. ChannelEventHub. https://fabric-sdk-node.github.io/ChannelEventHub.html

  3. Ethereum blockchain app platform. https://ethereum.org/

  4. Everledger: A digital global ledger. https://www.everledger.io/

  5. Hyperledger fabric. https://www.hyperledger.org/projects/fabric

  6. Parity. https://www.parity.io/

  7. Redis. https://redis.io/

  8. Securekey: Building trusted identity networks. https://securekey.com/

  9. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: horizontal scaling and confidentiality on permissioned blockchains. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 111–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_6

    Chapter  Google Scholar 

  10. Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P., Chatterjee, S.: Performance characterization of hyperledger fabric. In: CVCBT, pp. 65–74 (2018)

    Google Scholar 

  11. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses with BFT-SMART. In: DSN, pp. 355–362 (2014)

    Google Scholar 

  12. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.: BLOCKBENCH: a framework for analyzing private blockchains. In: Salihoglu, S., Zhou, W., Chirkova, R., Yang, J., Suciu, D. (eds.) SIGMOD, pp. 1085–1100 (2017)

    Google Scholar 

  13. Gorenflo, C., Lee, S., Golab, L., Keshav, S.: Fastfabric: scaling hyperledger fabric to 20,000 transactions per second. CoRR abs/1901.00910 (2019)

    Google Scholar 

  14. Gupta, H., Hans, S., Aggarwal, K., Mehta, S., Chatterjee, B., Jayachandran, P.: Efficiently processing temporal queries on hyperledger fabric. In: ICDE, pp. 1489–1494 (2018)

    Google Scholar 

  15. Gupta, H., Hans, S., Mehta, S., Jayachandran, P.: On building efficient temporal indexes on hyperledger fabric. In: CLOUD, pp. 294–301 (2018)

    Google Scholar 

  16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  17. Nasir, Q., Qasse, I.A., Talib, M.A., Nassif, A.B.: Performance analysis of hyperledger fabric platforms. Secur. Commun. Netw. 2018, 1–14 (2018)

    Article  Google Scholar 

  18. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis of private blockchain platforms in varying workloads. In: ICCCN, pp. 1–6 (2017)

    Google Scholar 

  19. Raman, R.K., et al.: Trusted multi-party computation and verifiable simulations: a scalable blockchain approach. CoRR abs/1809.08438 (2018)

    Google Scholar 

  20. Sharma, A., Schuhknecht, F.M., Agrawal, D., Dittrich, J.: How to databasify a blockchain: the case of hyperledger fabric. CoRR abs/1810.13177 (2018)

    Google Scholar 

  21. Sousa, J., Bessani, A., Vukolic, M.: A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In: DSN, pp. 51–58 (2018)

    Google Scholar 

  22. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: MASCOTS, pp. 264–276 (2018)

    Google Scholar 

  23. White, M.: Digitizing global trade with Maersk and IBM. https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61572335, 61572336, 61902270), and the Major Program of Natural Science Foundation, Educational Commission of Jiangsu Province, China (Grant No. 19KJA610002), and the Natural Science Foundation, Educational Commission of Jiangsu Province, China (Grant No. 19KJB520052, 19KJB520050), and Collaborative Innovation Center of Novel Software Technology and Industrialization, Jiangsu, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Chen, W., Li, Z., Xu, J., Liu, A., Zhao, L. (2019). Locking Mechanism for Concurrency Conflicts on Hyperledger Fabric. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics