Skip to main content

Computing Maximum Independent Sets over Large Sparse Graphs

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2019 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Included in the following conference series:

Abstract

This paper studies the fundamental problem of efficiently computing a maximum independent set (or equivalently, a minimum vertex cover) over a large sparse graph, which is receiving increasing interests from the research communities of graph algorithms and graph analytics. The state-of-the-art algorithms for both exact and heuristic computations heavily rely on kernelization techniques that use reduction rules to reduce a large input graph to a smaller graph (called its kernel) while preserving the maximum independent set. However, the existing kernelization techniques either run slow (but return a small kernel), or return a large kernel (but run fast). In this paper, we propose two techniques—aggressive incremental reduction rules and connected component checking—to speed up the kernelization process while computing a small kernel. Furthermore, for efficient maximum independent set computation, we propose to control the giant kernel connected component size, and propose to invoke maximum clique solvers for solving the kernel graph. Extensive empirical studies on large real graphs demonstrate the efficiency and effectiveness of our techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It will be our future work to integrate alternative reduction into our algorithms.

  2. 2.

    http://snap.stanford.edu/.

  3. 3.

    https://www.cc.gatech.edu/dimacs10/downloads.shtml.

References

  1. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/fpt algorithms in practice: a case study of vertex cover. Theor. Comput. Sci. 609, 211–225 (2016)

    Article  MathSciNet  Google Scholar 

  2. Andrade, D.V., Resende, M.G., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012)

    Article  Google Scholar 

  3. Araujo, F., Farinha, J., Domingues, P., Silaghi, G.C., Kondo, D.: A maximum independent set approach for collusion detection in voting pools. J. Parallel Distrib. Comput. 71(10), 1356–1366 (2011)

    Article  Google Scholar 

  4. van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and colorful independent sets. CoRR abs/1402.0851 (2014)

    Google Scholar 

  5. Chang, L.: Efficient maximum clique computation over large sparse graphs. In: Proceedings of KDD 2019, pp. 529–538 (2019)

    Google Scholar 

  6. Chang, L., Li, W., Zhang, W.: Computing a near-maximum independent set in linear time by reducing-peeling. In: Proceedings of SIGMOD 2017, pp. 1181–1196 (2017)

    Google Scholar 

  7. Dahlum, J., Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Accelerating local search for the maximum independent set problem. In: Proceedings of SEA 2016 (2016)

    Google Scholar 

  8. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25 (2009)

    Google Scholar 

  9. Håstad, J.: Clique is hard to approximate within n\({}^{\text{1-epsilon}}\). In: Proceedings of FOCS 1996, pp. 627–636 (1996)

    Google Scholar 

  10. Hespe, D., Schulz, C., Strash, D.: Scalable kernelization for maximum independent sets. In: Proceedings of ALENEX 2018, pp. 223–237 (2018)

    Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  12. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal independent sets at scale. In: Proceedings of ALENEX 2016, pp. 138–150 (2016)

    Google Scholar 

  13. Li, C., Fang, Z., Xu, K.: Combining maxsat reasoning and incremental upper bound for the maximum clique problem. In: Proceedings of ICTAI 2013, pp. 939–946 (2013)

    Google Scholar 

  14. Li, C.M., Jiang, H., Manyà, F.: On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem. Comput. Oper. Res. 84, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Lu, J., Yang, H., Xiao, X., Wei, Z.: Towards maximum independent sets on massive graphs. PVLDB 8(13), 2122–2133 (2015)

    Google Scholar 

  16. Nemhauser Jr., G. L., Trotter, L.: Vertex packings: structural properties and algorithms. Math Programm. 8(1), 232–248 (1975)

    Google Scholar 

  17. Puthal, D., Nepal, S., Paris, C., Ranjan, R., Chen, J.: Efficient algorithms for social network coverage and reach. In: 2015 IEEE International Congress on Big Data, pp. 467–474 (2015)

    Google Scholar 

  18. Strijk, T., Verweij, A., Aardal, K.: Algorithms for maximum independent set applied to map labelling (2000)

    Google Scholar 

  19. Tomita, E.: Efficient algorithms for finding maximum and maximal cliques and their applications. In: Proceedings of WALCOM 2017, pp. 3–15 (2017)

    Google Scholar 

  20. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469, 92–104 (2013)

    Article  MathSciNet  Google Scholar 

  21. Zheng, W., Wang, Q., Yu, J.X., Cheng, H., Zou, L.: Efficient computation of a near-maximum independent set over evolving graphs. In: Proceedings of ICDE 2018 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alsahafy, M., Chang, L. (2019). Computing Maximum Independent Sets over Large Sparse Graphs. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics