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Abstract. In this paper, we perform a comparison among a number of
different virtual bridging and switching technologies, each widely avail-
able and commonly used on Linux, to provide network connectivity to
co-located LXC containers for high-performance application scenarios.

1 Introduction

Information and Communication Technologies (ICT) have gone quite a long
way, with continuous advances in processing and networking technologies, among
others, that resulted into a great push towards distributed computing models.
This is witnessed by the widespread diffusion of public cloud computing services,
along with private cloud models being employed in nearly every sector/industry.
These allow for a greater degree of flexibility in resource management paving the
way for on-demand, cost-effective distributed computing solutions progressively
replacing traditional dedicated infrastructure management.

In the domain of network operators, recent technological trends led to re-
placing traditional physical networking infrastructures sized for the peak hour
with software-based virtualized network functions (VNFs). These are instanti-
ated on-demand and “elastically”, so as to provide the required level of service
performance. The new paradigm of Network Function Virtualization (NFV) [11]
relies on a flexible general-purpose computing infrastructure managed according
to a private cloud paradigm, to provide networking functions at reduced opera-
tional costs. As an example, in the Radio Access Network (RAN), a number of
different options have been proposed [1] for splitting the functionality among the
distributed unit (DU) that needs to stay close to the antenna, vs. the centralized
unit (CU) that can be off-loaded to a closeby private cloud data center.

In this context, a number of network functions need high-performance and
low end-to-end latency, where a key role is played by the communication over-
heads experienced by the individual software components participating in each
deployed VNF. Such requirements are so tight that NFV has already focused on
lightweight virtualization solutions based on operating system (OS) containers,



rather than traditional virtual machines (VMs). Moreover, in order to reduce
even further the per-packet processing overheads, and at the same time allow
for the maximum flexibility in packet processing by the VNF, plenty of exper-
imentation is being done on the use of user-space networking, as opposed to
traditional TCP/IP based management of network packets within an OS ker-
nel or hypervisor. While using these kernel bypass3 techniques, among which a
prominent position in industry is played by the Data Plane Development Kit
(DPDK) [7],one of the key functionality that needs to be preserved is the vir-
tual switching among multiple containers within the same host. This need can
occasionally be dropped in presence of hardware support for virtual switching,
such as with Single-Root of I/O Virtualization (SR-IOV) [4], letting different
containers/VMs use dedicated virtual functions of the same NIC.

Paper contributions and structure. In this paper, experimental results are pre-
sented comparing different virtual switching and user-space packet processing
solutions. The focus is on the maximum achievable throughput for small packets
exchanged among containers deployed onto the same host. This highlights the
difference in per-packet processing overheads of the compared solutions.

The remainder of this paper is structured as follows. Section 2 introduces ba-
sic terminology used throughout the paper, and describes the basic elements of
the compared networking/switching technologies. Section 3 describes the testbed
we used for the comparative evaluation of the considered technologies, and
presents experimental results gathered on a multi-core platform running Linux.
Section 4 reviews related literature on the topic, discussing our contribution
in relation to prior art. Finally, Section 5 contains a few concluding remarks,
pointing out future research lines on the topic.

2 Overview of compared solutions

This section presents various background concepts about containers on Linux
and the various virtual switching solutions that are compared later in Section 3.

Containers

Differently from traditional machine virtualization, allowing multiple operating
systems to coexist on the same host, virtualizing the available hardware via
full emulation or para-virtualization, containers are a lightweight virtualization
abstraction realized directly within a single operating system, by recurring to
proper kernel-level encapsulation and isolation techniques.

The Linux kernel supports containers by proper configuration of control
groups (affecting resource scheduling and control) and namespaces via user-space
tools such as Docker or LXC. Namespaces allow to isolate (and virtualize) system
resources: a process running in a namespace has the illusion to use a dedicated

3 See for example: https://lwn.net/Articles/629155/



copy of the namespace resources, and cannot access resources outside of it. The
Linux kernel provides different kinds of namespaces, one for each different hard-
ware or software resource that needs to be isolated/virtualized. For example,
the network namespace encapsulates all the resources used by the kernel net-
work stack, including network interfaces, routing tables, iptables rules, etc...

Network connections among processes running inside and outside a names-
pace are generally implemented by using a virtual Ethernet pair, i.e., two soft-
ware network interfaces (there is no physical NIC attached to them) connected
point-to-point, so that packets sent to one of the two interfaces are received by
the other, and vice-versa. Hence, if one of the two endpoints is inside the names-
pace and the other one is outside, it is possible for the applications running in the
namespace to communicate with the external world. This is shown in Figure 1a.

Socket API

Traditionally, the external endpoint of a virtual Ethernet pair is attached to a
Linux software bridge or some other kind of virtual switch, while the internal
endpoint is accessed via simple blocking system calls exchanging a packet per
call, such as when using send() or recv(). As a result, to exchange a UDP
packet, at least two system calls are needed, along with various user-space to
kernel space switches, data copies, and scheduling decisions. Therefore, when
exchanging small packets, the overheads associated to each system call needed
by the sender and the receiver grow to prohibitive values. On the other hand,
when exchanging large packets, these overheads are amortized over the large
amounts of data exchanged per call, but this time performance bottlenecks are
due mostly to how many times data is copied to go from the sender to the
receiver.

The typical way to mitigate the first issue is by recurring to batch APIs,
with which a single system call sends or receives multiple packets, as possible
with sendmmsg() and recvmmsg(). The second issue, instead, is mitigated by
having the application and the underlying hardware reduce any need for copying
data, exploiting memory-mapped I/O, scatter-gather primitives or using zero-
copy APIs, such as the MSG_ZEROCOPY flag with standard send().

Use of virtio

To improve the networking performance between containers, system calls, con-
text switches and data copies should be avoided as much as possible. For ex-
ample, if two containers are co-located on the same physical node, they can
exchange data by using shared memory buffers. This requires to bypass the in-
kernel networking stack or to use a user-space TCP/IP stack. The latter allows
user programs to be developed by using standard networking APIs, where the
system is able to use the appropriate optimizations when possible.

This can be achieved by replacing virtual Ethernet pairs with para-virtualized
network interfaces based on the virtio standard [19, 18]. These use “virtual queues”
of received and transmitted packets, that can be shared among different guests
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Fig. 1: Different approaches to inter-container networking: (a) kernel-based so-
lution; (b) using DPDK with vhost in user mode; (c) using SR-IOV support.

and the host, allowing for the implementation of efficient host/guest commu-
nications. While virtio virtual NICs are generally implemented by hypervisors
such as qemu/kvm, thanks to the recent “vhost-user” introduction they can also
be used in containerized environments. This way, vhost services [23] can be used
to move packets across virtual NICs. These can be implemented either in kernel
space (using a kernel thread created by the vhost-net module) or in user-space,
using a daemon [12] to implement the vhost functionalities. See also Figure 1b.

DPDK

The simplest way to use virtio NICs in containers to enable the memory sharing
optimizations is through a commonly used kernel bypassing framework: the Data
Plane Development Kit (DPDK). While DPDK has been originally designed
only for kernel bypassing (implementing the NIC drivers in user space), it now
provides some interesting features such as the virtio and vhost drivers. The
virtio driver is able to connect to virtio-net virtual interfaces, while the vhost
driver can be used to implement vhost functionalities in user space (the so called
“vhost-user”). For example, virtual switches can use the DPDK vhost driver to
implement virtio-net endpoints connecting different VMs.

When using containers instead of full VMs, the vhost driver can be used to
implement virtual NICs for the virtio-user driver; as a consequence, a DPDK-
based virtual switch running in the host can create virtio-net interfaces which
DPDK-based applications running in the containers can connect to. Different



software components (described below) can be used as the vhost-user user-space
daemon. Clearly, the inter-container networking performance also depends on
the software component used as a vhost-user daemon, as shown in Section 3.

Virtual switches based on virtio

The following is a list of the most commonly adopted solutions in industry for
inter-container communications using virtual switches. For each of these sce-
narios, two vhost-user ports are connected with each other via a virtual switch
application running in user space.

Open vSwitch (OVS) [10] is an open-source software-only virtual switch
that can be used with Linux-based hypervisors (e.g., KVM) or container plat-
forms [13]. Since it is a full fledged open-source switching solution, OVS is our
reference to evaluate performance of generic virtual switching solutions between
vhost-user ports.

DPDK Testpmd can be used to test the functionality of the DPDK PMD
driver and can be configured to act as a simple bridge between pairs of virtual
or physical ports. Albeit configurable, the default pairing between ports is per-
formed on their ordering (ports 0 and 1, ports 2 and 3, and so on), which means
that this software does not contain any actual switching functionality nor packet
inspection programmed in it. This is why we will use it as a reference for the
maximum performance achievable using PMD driver and vhost-user ports.

Snabb [22] is a simple and fast packet networking toolkit that can be used
to program user-space packet processing flows [12]. This is done by connecting
functional blocks in a directed acyclic graph, each block performing a specific
action or representing a custom driver for an interface. In our tests, we config-
ured it statically as a simple bridge between the two vhost-user ports, and thus
it represents the maximum achievable performance by an actual configurable
virtual switch solution that performs minimal packet processing on forwarding.

FD.io Vector Packet Processing (VPP) [9] is an extensible framework
that provides switching and routing functionalities released in the context of
the Fast Data IO (FD.io) Linux Foundation project and that is an open-source
implementation of Cisco’s VPP technology. The core idea behind VPP is to
process more than one packet at a time, taking advantage of instruction and
data cache localities to achieve lower latencies and higher throughput [3]. This
switch will be used to compare its performance with the one achieved by OVS,
which does not have this optimization.



Single Root I/O Virtualization (SR-IOV)

SR-IOV [4] is a specification that allows a single PCIe device to appear as multi-
ple physical PCIe devices. This is achieved by introducing the distinction between
Physical Functions (PFs) and Virtual Functions (VFs): the former allow for us-
ing the full list of features of the PCIe device, while the latter are “lightweight”
functions that have only the ability to move data between an application and
the device. VFs can be individually exposed in passthrough to VMs or contain-
ers, which can access directly the hardware device, without any need for virtual
switching. Most SR-IOV devices contain a hardware layer-2 switch able to for-
ward traffic among PFs and VFs. This is depicted in Figure 1c. SR-IOV devices
can either be accessed trough OS drivers, or via DPDK ones, which allow an
application to gain complete control over a VF to access it from user space. In
this case, a Testpmd application must run on the host to handle configuration
requests from applications, to assign or release VFs and configure the control
plane associated with the hardware switch, which will then perform all forward-
ing operations in hardware.

3 Experimental results

In this section we introduce the experimental testbed used for evaluating the
considered technologies, along with our testing application and environment.

Platform description and set-up

Experiments were performed on a Dell PowerEdge R630 V4 server equipped with
two Intel® Xeon® E5-2640 v4 CPUs at 2.40GHz, 64GB of RAM and an Intel®

X710 DA2 Ethernet Controller for 10 GbE SFP+ (used in SR-IOV experiments).
The machine is configured with Linux kernel version 4.15.0, DPDK version 18.11,
OVS version 2.11.0, Snabb version 2018.09 and VPP version 19.04. To maximize
reproducibility of results, our tests have been run without using hyperthreads
and disabling CPU frequency scaling (governor set to performance and Turbo
Boost disabled).

Testing application

To evaluate the various local networking alternatives described in Section 2,
a testing application has been developed, composed of a sender and a receiver
exchanging packets at a configurable rate. Each of these programs is deployed on
a separate container pinned down on a different CPU of the same CPU package
(same NUMA node). The sender program sends packets of a given size in bursts
of a given size, matching a desired sending rate. The three parameters can be
controlled via command-line options. The receiver program continuously tries to
receive packets, measuring the received packet rate.

In a realistic scenario, when deciding what networking paradigm to adopt, dif-
ferent trade-offs would be possible: for example, traditional send() and recv()



Table 1: Maximum throughput achieved for various socket-based solutions, using
packets of 64 bytes and bursts of 64 packets.

Technique Max Throughput (kpps)

UDP sockets using send/recv 227
UDP sockets using sendmmsg/recvmmsg 276
Raw sockets using send/recv 471
Raw sockets using sendmmsg/recvmmsg 594

system calls can be used on raw sockets to bypass the networking stack, but
not the kernel completely. Or a user-space TCP/IP stack implementation can
be used to allow using higher-level networking protocols without giving up on
the advantages coming from direct access to the NIC.

Therefore, the benchmark application comes in various incarnations that use
UDP sockets, bypass the networking stack by using raw sockets, or bypass the
kernel completely so that:

1. virtio-net is used instead of virtual Ethernet pairs to enable optimizations
(based on shared memory buffers) in inter-container communications;

2. DPDK is used to bypass the kernel completely (both in-kernel device drivers
and networking stack);

3. polling techniques are used for sending/receiving network packets.

The first version of the benchmark application uses kernel sockets to exchange
data; it can be configured to send packets one at a time (using send/recv) or
in bursts of various sizes (using sendmmsg/recvmmsg to perform a single system
call per burst) and it can be set to use raw sockets instead of UDP sockets, to
bypass part of the network stack during kernel processing. In any case, the two
containers communicate through a simple Linux bridge (further benchmarking
with alternative bridging techniques is planned in future work).

The other application variant uses DPDK and the PMD driver to bypass the
kernel when exchanging data. This allows it to be used both with vhost-user
ports or with SR-IOV virtual functions, depending on the test.

Results

Using the described setups, we measured the receiving rate at various UDP
packet sizes (from 64 to 1500 bytes) and packet sending rates (from 1 to 20Mpps)
in steady state conditions. Moreover, packets are sent in bursts (of 16, 32, and
64 packets per burst).

The first result that we want to point out is that performance achieved with-
out using kernel-bypass techniques are much lower than the ones achieved using
DPDK, either via virtio or offloading to SR-IOV. For example, using packets
of 64 bytes all DPDK solutions were able to achieve over 5Mpps, while tradi-
tional sockets were not even able to reach 1Mpps. Table 1 reports the maximum



throughput achieved using the traditional socket APIs and show that bypassing
the networking stack can improve the performance from 276 kpps to 594 kpps;
however, even with optimizations like sending packets in batches with sendmmsg

and a burst size of 64 packets, the achieved performance is significantly impaired
when a virtual Ethernet port is used to connect the two containers, and it is even
lower with smaller burst sizes.

Switching to the higher-performance alternatives relying on kernel bypass,
Figure 2 summarizes the major results from our experimentation, reporting the
achieved throughput (on the Y axis) with respect to the desired packet send-
ing rate (on the X axis), using bursts of 16 packets and packet sizes of 64 and
512 bytes. Note that our tests using a burst size of 32 and 64 packets achieved no
measurable difference in the results, compared to the showed results, referring
to a burst size of 16 packets.

In the plots, each data point is obtained from a 1-minute run, by averaging
the obtained per-second receive rate for 20 seconds, discarding as many initial
samples for each run, to ensure we skip the initial warm-up phase. Note that the
standard deviation among the 20 averaged values was below 2.5% (and around
0.5% on average) for all the runs.

In all our tests, each networking solution is able to achieve the desired
throughput up to a certain maximum value, after which any additional packet
sent is dropped before reaching its destination. The maximum throughput achieved
with each packet size and networking technology is summarized in Figure 3.

Among the solutions that use kernel-bypass techniques, maximum perfor-
mance is achieved offloading traffic to the SR-IOV enabled Ethernet controller,
taking advantage of its hardware switch. The second best performance is achieved
by DPDK Testpmd application used as virtual bridge; while this result was ex-
pected among virtio-based solutions, it cannot be used in a realistic scenario
because the application itself is not a virtual switch, it just forwards all the
packets received from a given port to another statically assigned port. Snabb
resulted as the best among software switches during our tests; however, it was
configured to act as a simple bridge between the two virtual ports, limiting to
the very minimum the amount of processing performed on packet forwarding.

Between the two considered complete virtual switches, VPP and OVS, the
former is able to achieve a higher throughput with respect to the latter when the
packets are smaller than 512 bytes. This is probably thanks to the batch packet
processing features included with VPP, which make it more cache-friendly and
lead to higher network performance on larger amounts of packets.

Final remarks

Results indicate clearly that if the focus of the NFV application being developed
is to achieve maximum performance, SR-IOV is the way to go, as it can clearly
outperform even Testpmd, which is just a mock bridge application. This however
requires custom configuration of containers to access the device in passthrough
and introduces some limits to the portability of applications, even if DPDK
framework provides a sufficiently generic API to access either virtual or physical
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Fig. 2: Receive rate obtained at varying sending rate, with a packet size of
64 bytes (a) and 512 bytes (b).
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Fig. 3: Maximum performance achieved by each switching technology. Notice
that the last two entries on the x axis are not in scale with the rest of the axis.

devices with little effort on a great variety of platforms. If it is not possible
to use a SR-IOV enabled interface, the two most promising alternatives based
on vhost-user are Snabb and VPP. It is worth noting that Snabb configuration
must be programmed manually in the Lua language, while VPP accepts a simple
configuration file on startup.

4 Related Work

Several works appeared in prior research literature addressing how to optimize
the networking performance for virtual machines and containers. For example,
some authors investigated [2] packet forwarding performance achievable in vir-
tual machines using different technologies to implement the virtual NICs and to
connect them to the host network stack or physical NIC.

Many solutions exist to greatly reduce the overheads due to interrupt han-
dlers, like interrupt coalescing and other optimizations available on Linux through
New API (NAPI) [21], including hybrid interrupt-handling techniques that switch
dynamically between interrupt disabling-enabling (DE) and polling (NAPI) de-
pending on the actual traffic on the line [20].

Comparisons among Remote Direct Memory Access (RDMA) [15], DPDK
and traditional sockets already exist [5], mainly focusing on the achievable min-
imum round-trip latencies between two different machines. These works show
how both RDMA and DPDK can outperform sockets, achieving much smaller
latencies for small UDP packets, at the cost of forcing applications to operate in
poll mode, leading unavoidably to high CPU utilizations. Also, authors point out
that DPDK can actually be used in combination with interrupts, saving energy,
but before sending or receiving packets the program must switch back to polling



mode. This reduces CPU utilization during idle times, at the cost of a greater
latency when interrupts must be disabled to revert to polling mode, when the
first packet of a burst is received.

Another survey among common networking set-ups for high-performance
NFV exists [8], accompanied by a quantitative comparison addressing through-
put and CPU utilization of SR-IOV, Snabb, OVS with DPDK and Netmap [16].
Authors highlight how the different solutions have remarkable differences in se-
curity and usability, and they show that, for local VM to VM communications,
Netmap is capable of reaching up to 27 Mpps (when running on a 4GHz CPU),
overcoming SR-IOV due to its limited internal switch bandwidth that becomes a
bottleneck. While in this paper we provide a thorough performance analysis for
many of the networking solutions described in that work, some of them have not
been included; in particular, we did not evaluate NetVM [6] and Netmap (along
with its associated virtual switch, VALE [17]), because our focus has been here
on solutions commonly adopted in current NFV industrial practice. However,
their inclusion in the comparison is among our planned future work.

In another interesting work [14], VPP, OVS and SR-IOV are compared with
respect to scalability in the number of VMs on a single host. Other works exist
in the area, but a complete state of the art review is out of the scope of this
paper.

Differently from the above mentioned works that mostly deal with networking
performance for virtual machines, in this paper we focused on industrially viable
solutions for high-performance networking for Linux containers. Also, this paper
extends our preliminary work [24], where a very basic comparison among com-
munication techniques for co-located Linux containers was done, with a strong
focus on motivational arguments for the research in the context of NFV.

5 Conclusions and Future Work

In this paper, we compared various switching technologies for inter-container
communications, with a focus on high-performance and poll-based APIs em-
ploying batch-based packet processing in user-space. In our experimentation,
the best performance has been achieved by SR-IOV, followed by Snabb, among
DPDK based virtual switching solutions. These all outperform what is achievable
with traditional socket-based APIs and a Linux virtual bridge.

In the future, we plan to extend the evaluation by: considering also the la-
tency dimension, along with the throughput one considered in this work; compar-
ing the various solutions when transmitting through a real network, in addition
to the local communications considered here; considering additional works in the
comparison, such as Netmap, VALE and NetVM; and finally evaluating how the
various solutions impact the performance of a realistic NFV use-case, in addition
to the low-level benchmark considered so far.
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