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Abstract. In a virtualized computing server (node) with multiple Vir-
tual Machines (VMs), it is necessary to dynamically allocate memory
among the VMs. In many cases, this is done only considering the mem-
ory demand of each VM without having a node-wide view. There are
many solutions for the dynamic memory allocation problem, some of
which use machine learning in some form.

This paper introduces CAVMem (Continuous-Action Algorithm for Vir-
tualized Memory Management), a proof-of-concept mechanism for a de-
centralized dynamic memory allocation solution in virtualized nodes
that applies a continuous-action reinforcement learning. (RL) algorithm
called Deep Deterministic Policy Gradient (DDPG). CAVMem with DDPG
is compared with other reinforcement learning algorithms such as Q-
Learning (QL) and Deep Q-Learning (DQL) in an environment that
models a virtualized node.

In order to obtain linear scaling and be able to dynamically add and re-
move VMs, CAVMem has one agent per VM connected via a lightweight
coordination mechanism. The agents learn how much memory to bid for
or return, in a given state, so that each VM obtains a fair level of perfor-
mance subject to the available memory resources. Our results show that
CAVMem with DDPG performs better than QL and a static allocation
case, but it is competitive with DQL. However, CAVMem incurs signif-
icant less training overheads than DQL, making the continuous-action
approach a more cost-effective solution.

Keywords: reinforcement learning - memory - virtualization.

1 Introduction

Cloud infrastructures are built using virtualization technology, which provides
isolation for concurrently running applications [5] and allows sharing of the avail-
able computing resources [5, 6, 3,4]. When multiple VMs are active in a node,
its physical memory is allocated among the VMs in order to optimize through-
put and prevent memory starvation. This memory allocation problem is difficult
to solve because the memory demand of a VM changes continuously. Many so-
lutions for this problem are limited by the complex relationship between the
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memory allocated to a VM, the applications’ behavior and their performance,
for which RL provides a good alternative.

Different approaches of RL have been applied to the resource management
problem in virtualized nodes [10] which rely on the discretization of states and
actions. Discretization introduces some limitations, mainly combinatorial explo-
sion: as the number of states/action grows, the problem becomes unsolvable [18].
In the context of memory allocation, discretization restricts the granularity at
which memory can be allocated, limiting the opportunities for better optimiza-
tion. Another limitation of current RL approaches for resource management is
that they deploy a single agent responsible for re-allocating memory. Such a cen-
tralized approach has scalability and flexibility restrictions, since it introduces a
traffic bottleneck and single points of failure.

This paper presents CAVMem (Continous-Action Algorithm for Virtualized
Memory Management), which serves as a proof-of-concept for a solution to the
dynamic memory allocation problem using a distributed continuous-action RL
formulation, avoiding the limitations of discretization and centralization. To the
best of our knowledge, this is the first such formulation of the memory allocation
problem. CAVMem is initially designed with DDPG, but other RL algorithms
were also implemented, namely Q-Learning [13] (QL) and Deep Q-Learning [7]
(DQL). These are compared in a model environment that simulates certain as-
pects of a virtualized computing node.

In summary, the contributions of this paper are:

@ Formulation of the memory management problem as a distributed continuous-
action Markov Decision Process (MDP). This formulation supports an unlimited
and variable number of VMs.

@ Development of a continuous-action off-policy model-free RL algorithm for
dynamic memory allocation.

@ Comparison between three RL approaches: a) CAVMem with DDPG (con-
tinuous action space), b) CAVMem with QL (tabular, non-continuous action)
and ¢) CAVMem with DQL (non-continuous action). We also compare against
the static policy that divides memory equally among VMs.

The rest of this paper is organized as follows. Section 2 provides background
information on memory allocation and RL. Section 3 explains the design of
CAVMem and its contributions. Section 4 explains our experimental method-
ology. Section 5 presents the results and discussion. Section 6 presents related
work and Section 7 presents our conclusions and future work.

2 Background

2.1 Memory Management in Virtualized Nodes

Cloud services are built on top of virtualization technology, which make use of a
hypervisor to multiplex certain physical resources such as CPUs and I1/0O inter-
faces and allocate others, such as memory. When a VM is created, it is allocated
a portion of the node’s memory. If the VM increases its memory demand, it may
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exceed its initial allocation. In this case, the VM may swap data to its (virtual)
disk device(s), suffering a significant performance loss. In this case, the VM is
underprovisioned of memory. A VM with idle memory is over-provisioned. When
one or more VMs are in this state while others are under-provisioned, it is nec-
essary to re-allocate memory to re-balance the allocation and optimize overall
system performance.

Analytical solutions for this problem require the analysis of many VM-applic-
ation sets and combinations. The number of possibilities is huge, and attempting
to obtain solutions in this way is intractable. Instead, heuristics are designed to
exploit optimal allocations for known sets. Heuristics are also limited since some-
times they do not generalize well for all possible combinations. Reinforcement
learning is a good alternative to overcome these limitations.

2.2 Reinforcement Learning: Markov Decision Process

Reinforcement learning problems involve an agent interacting with an environ-
ment, usually stochastic, with the goal of maximising its total (cumulative) dis-
counted reward. These problems are typically modeled as Markov Decision Pro-
cesses (MDP), which have the following elements:

State space S, which contains all states in which the environment can be.

Action space A, which contains the the actions the agent can take.

— Transition probability function, denoted by P : S x Ax .S — R. The function
gives the probability that if the agent is in state s; in timestep 7 and it takes
action a;, then it will transition to state s;11 in the following timestep (i+1).

— Reward function R : S x A x S — R, which gives the immediate reward

obtained from the transition from state s; via action a; to new state s;41.

The objective of the agent is to learn the optimal policy 7 : S — A (state-to-
action mappings) for which the discounted reward r; = 35 ~*~tr(sy,, ak, sg41)
is maximized, where vy € [0, 1] is the discount factor. The agent learns the op-
timal policy by maximizing the (expected) state-action value function Q™ (s, a),
expressed by the Bellman equation [8]:

Q" (st,at) = E[r(st, at) +vQ" (s¢41, T(St41))] (1)

The Q-function can be represented as 2D matrix of states and actions, where
each entry Q(s,a) represents the reward for an action at a given state. This
approach is known as Q-Learning [13] (QL). This requires quantizing both the
state and action space into discrete values within the minimum and maximum
range. The need to build the extensive 2D matrix of state-action space leads
to a combinatorial explosion of the state—action space, which could quickly in-
crease the learning time and memory complexity. To solve this, Mnih et al. [7]
estimate the Q-function through a parametrized neural network (NN) function
approximator, an approach called Deep Q-Learning (DQL). However, both DQL
and QL estimate the action as a discrete value.

In this context, Lillicrap et al. introduce a method to estimate the actions
continuously called Deep Deterministic Policy Gradient [18] (DDPG). DDPG is



4 L. A. Garrido et al.

State — " Action
—ﬁ Policy: Actor

Action .
I_, v
‘ Value Function

Approximator: Critic

Fig. 1. Diagram of the actor—critic architecture for DDPG.

an off-policy learning algorithm [14], meaning that it learns the optimal policy
interacting with the environment.

Figure 1 shows a high-level view of the DDPG learning agent. It includes
two neural networks: actor network and critic network. The input to the actor
network is the current state of the environment, while the input to the critic net-
work is both the current state and the continuous actions generated by the actor.
Using continuous actions for memory allocation is potentially beneficial since it
allows to allocate memory at a finer granularity, and prevents the limitations
imposed by discretization.

3 CAVMem: Algorithm for Virtualized Memory
Management

In this section, we introduce CAVMem, a mechanism using continuous action
RL for memory management in virtualized nodes. We formulate the problem as
a Markov Decision Process. The MDP is formulated such that it does not impose
limits on the number of VMs. It creates a RL agent per VM which has both a
local view and a node-wide view, indirectly passing to a VM information on the
behavior of other VMs. The reward is set to optimize aggregate performance
while ensuring fairness among the VMs. In the following subsections, we detail
how the MDP is formulated, its advantages and the learning mechanism.

3.1 Decentralized Strategy for Memory Management

Determining a priori the memory demands of VMs in virtualized servers is com-
plicated because the nodes seldom have prior knowledge of applications on each
VM or the number of concurrently active VMs. Instead, another approach is
to let the VMs ask for the memory they need. In this case, each VM monitors
its own resource utilization and bids for memory independently, resulting in a
decentralized solution.

Decentralization has two advantages. First, CAVMem is designed to adjust
itself to any amount of active VMs, a feature allowed by our MDP formulation.
Second, CAVMem removes a single point of control, which allows to scale even
beyond a single computing node.
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State information from computing node and VMs

Name Range Description
perVM msr,}/Mj [-1, 1] RAM miss rate of V Mj, rescaled to range [-1,

1]; i.e. a value of -1 means zero miss rate.

perVM MtVMj [0, 1]  Fraction of total RAM allocated to V M;.

Node  avgMsrpode [-1, 1]  Average RAM miss rate across all VMs, equal
to & > msr:/Mj.

Node  msrTgtpode [-1, 1] Target RAM miss rate for all VMs given by

Equation 3.
Node totalMemUsef®® [0,1]  Fraction of the node’s physical RAM that is
allocated to VMs, equal to > MtVMj.

Table 1. State inputs to the actor and critic networks of the DDPG learning agents.

3.2 Formulating the problem as an MDP

[State space, S]: Table 1 lists the five state variables for each agent, two of
which belong to the VM and the other three are common to all VMs on the node.
This state space definition allows the agent to have some information about the
other active VMs through the information related to the node.
[Action space, A]: The action a:/ Mi chosen for V M; in timestep ¢ is referred
to as the VM’s memory bid, which ranges from -1.0 to 1.0. A positive bid is
a request for more memory and a negative bid is an action to release memory.
Concretely, the VM agent requests a total memory allocation equal to (1 +
ay M; ) X MtVMj . As discussed later, it may not be possible to fully satisfy the
request, for instance when there is insufficient memory for all requests or the
memory allocation for the VM would become too small.
[Reward function, R]: The reward function encourages a fair level of perfor-
mance across the VMs by making all VMs suffer the same amount of swapping
over each time step. This is done through a penalty (negative reward) propor-
tional to the absolute difference between the RAM miss rate of the VM, given
by msrxﬁ{" and the miss rate target, msrTgt?_ﬁ{lG:

rtVMj = —|m51"tVMj — msrTgt%|xk (2)
The parameter k, which we set to 1, affects the learning rate. The miss rate
target for the next timestep is given by:

node

msrTgttH = ngMsrf"de % \/totalMemUse?Ode (3)

Here, avgM srpoqe is the average RAM miss rate across all active VMs, de-
fined in Table 1. When it is non-zero and there is free memory, the factor
total M emU sepoqe. encourages the VMs to use more memory, via a well-known
square-root rule of thumb.

Environment Constraints for Decentralized Control Figure 2 shows a
high-level view of our system, including a module called the Bid Analyzer (BA),
the VMs and the learning agents of each VM. The BA checks the bids of the
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Fig. 2. Diagram of the DDPG learning Agents, one per VM.

learning agents before issuing them to the node. It prevents VM memory allo-
cation from being less than a given threshold (set manually at 384 MB) and it
prevents memory allocation from exceeding the node’s capacity. Additionally, it
also enforces bid prioritization for VMs that issue negative bids.

Action Space Exploration A classic problem in RL is the exploration—exploita-
tion dilemma [14], which captures the need to exploit the “optimal” solution
obtained so far but also explore potential better actions. To explore in contin-
uous action domains, the common approach is to use an Ornstein—Uhlenbeck
process [15,16]. This process is a noise signal that creates a Brownian mo-
tion around the deterministic action generated by the DDPG agent. At every
timestep, a noise signal is added to the action with a probability of €. In our im-
plementation, initially there’s a phase of aggressive exploration in which € = 1.
This probability reduces over time until it reaches ¢ = 0.001. This process is
called epsilon annealing, and it is used to transition from explorative policy to
an exploitative one [14].

4 Experimental Framework

CAVMem was implemented in Python 3.6 with Tensorflow 1.12 [12] on a system
with a 2.3 GHz Intel Core i7 processor and 16 GB of RAM. CAVMem is designed
with an underlying DDPG implementation, but we also tested it with DQL and
QL implementations for comparison, and a static allocation policy that divides
memory equally among VMs. Whenever CAVMem is mentioned, it is assumed
that the agents are DDPG implementations (continuous action).

The neural networks for DDPG are fully-connected with two hidden layers of
64 units with ReLU activation functions, while the output layers use Tanh. The
learning rates for the actor and critic networks are 0.0001 and 0.001, respectively,
using the Adam optimizer. The exploration phase lasts for 200 episodes, where
each episode has 100 steps. All experiments run for 1000 episodes.

DQL has similar parameters, but it only has one learning rate of 0.001 for
the Q-function approximator for 3 discrete actions. The QL implementation also
consists of 3 actions, and it has each state space variable quantized in 10 discrete
values. This results in a state-action matrix of 300,000 entries.
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Label Benchmark Name Description

Scenario 1 VM1, VM2: perlbench Both VMs run perlbench repeatedly.
Scenario 2 VM1: perlbench; VM2: gcc VM1 runs perlbench repeatedly, VM2 runs gce.
Scenario 3 VMI1: gcc; VM2: bzip2 VM1 runs gec repeatedly, VM2 runs bzip2.

Table 2. List of scenarios used for evaluation

VM-1 VM-2

0 cAvMem DQL QL Static

Avg. Miss Rate
B
1)
=]

N
[=]
(=]

Fig. 3. Average Miss Rate for Scenario 1. Less is better

The learning agents are deployed in a simulation environment of a virtualized
node, which include models of VMs and some aspects of system memory (ca-
pacity, RAM misses, utilization). This evaluation methodology allows to see the
effectiveness of the MDP formulation, without intervention of specific hardware.

We evaluate CAVMem in scenarios consisting of different combinations of
VMs executing SPEC CPU 2006 benchmarks [17], summarized in Table 2. Every
scenario runs two VMs with 6 GB of RAM, with 1 GB allocated initially.

In every scenario, three metrics are evaluated: 1) the average miss rate
(pages/second), 2) the average miss rate deviation, and 3) the overhead (time
spent in seconds) associated to the training of each agent. Every metric is mea-
sured over the last 100 episodes of each experiment. It is desirable that the
average miss rate is minimized by the agent, since this would avoid disk accesses
on a real system. The miss rate deviation is to compare how well the agent learns
the desired behavior according to the reward function. And the overhead allows
us to estimate the cost to the deployment of each agent.

5 Results for Evaluation

5.1 Results for Scenario 1

Figure 3 shows the average miss rates for Scenario 1. CAVMem with DDPG
has a miss rate 10% larger than static, while DQL and QL are higher by 14.7%
and 13.9% respectively. Since the VMs are executing the same benchmark, an
equal memory allocation is optimal resulting in static being the best in this case.
Nevertheless, we see that DDPG performs the best among the learning agents.

Figure 4 shows the average miss rate deviations for Scenario 1. CAVMem
tracks the target better than all other approaches. CAVMem has a miss rate
deviation 82.2% smaller than static, and 66.1% and 75.4% smaller than DQL
and QL, respectively.

Figure 5 shows the overheads for Scenario 1. DQL presents an overhead 10.64
and 15.0 times larger than CAVMem and QL respectively, a major consideration
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Fig. 7. Average Miss Rate Deviation for Scenario 2. Less is better

when deploying DQL. QL presents the smallest overhead, while CAVMem’s is
37% larger than QL’s.

5.2 Results for Scenario 2

Figure 6 shows the average miss rates for Scenario 2. QL and static fail to balance
the miss rates, which is an undesirable result, since they both benefit one VM
while harming the other. CAVMem and D@L maintain the miss rate balance to a
better degree by increasing the miss rate of both VMs. CAVMem minimizes the
miss rate 6.41% below DQL for VM1 and 5.81% above DQL for VM2. Seemingly,
CAVMem and D@L are competitive in performance.
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Figure 7 shows the miss rate deviations for Scenario 2. Here, static is further
away from the target, while CAVMem deviates by 67.6% more than DQL, even
though they both minimize the miss rate to similar values.

Figure 8 shows the overhead of the agents for Scenario 2. D@L maintains
an overhead 5.44 and 9.96 times larger than CAVMem and QL, respectively.
CAVMem'’s overhead is 70% larger than QL’s but performs similar to DQL.
Thus far, CAVMem provides the best performance-overhead trade-off.

5.3 Results for Scenario 3

Figure 9 shows the average miss rates for Scenario 3. DQL and static DQL
present imbalanced miss rates for the VMs, while CAVMem and DQL yield
similar values, with CAVMem being 5.96% larger than DQL.

Figure 10 shows the miss rate deviations for Scenario 3. DQL tracks the miss
rate targets better being 65.92% more accurate than CAVMem, while QL and
static fail to do so. We omit the overhead charts for this case due to lack of
space, but the experiments show that DQL’s overhead is 10.9 and 14.2 times
larger than CAVMem’s and @QL’s, respectively. CAVMem’s overhead is larger
than QL’s by 28%, still maintaining the cost-effectiveness of CAVMem.
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5.4 Discussion

We can summarize the findings as follows: 1) CAVMem with DDPG and DQL
are able to minimize and balance the miss rates in a comparable way, better
than static in most cases, while QL consistently fails to do so, 2) DQL tracks the
performance target better than CAVMem with DDPG, while static and QL fail
in most instances, 3) D@L has extremely high learning overheads when compared
to CAVMem with DDPG and D@L, highlighting a performance-cost trade-off.

6 Related Work

Many solutions have been proposed to solve the resource allocation problem
in cloud infrastructures [11,10,1, 3,4, 16] but so far, there have not been too
many efforts that use RL to exclusively solve the memory management prob-
lem in a single node, and much less continuous-action RL solutions. There are
some notable RL-based solutions for the resource allocation problem that targets
CPU and memory (and other resources) within a virtualized node. In [10], the
authors implemented a model-based DQL algorithm for VM resource configura-
tion, which included CPU time, virtual CPU and memory. CAVMem differs from
these RL-based solutions in three ways: 1) CAVMem uses continuous-action RL
exclusively for memory management, 2) CAVMem avoids discretization, and 3)
it is decentralized.

7 Conclusions and Future Work

This paper proposes CAVMem as a proof-of-concept of a distributed MDP for-
mulation for the memory allocation problem in virtualized nodes. Moroever,
CAVMem also offers a continuous-action RL agent to solve the allocation prob-
lem, avoiding discretization and exploiting de-centralization. Our results show
that the DDPG agent of CAVMem performs similar to the well-known DQL but
with much less learning overhead, making it a very cost effective solution.

For future work, CAVMem should be deployed in a real computing node,
and an exhaustive search of the parameter space of the learning agents is also
necessary. Likewise, it is necessary to test CAVMem with more combinations of
benchmarks and scenarios.
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