THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

A study on the performance of reproducible computations

Citation for published version:

Bombace, N & Weiland, M 2019, A study on the performance of reproducible computations. in M Weiland,
G Juckeland, S Alam & H Jagode (eds), High Performance Computing: ISC High Performance 2019
International Workshops, Frankfurt/Main, Germany, June 16-20, 2019, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 11887, Springer, pp. 441-451, ISC High Performance 2019, Frankfurt,
Germany, 16/06/19. https://doi.org/10.1007/978-3-030-34356-9 33

Digital Object Identifier (DOI):
10.1007/978-3-030-34356-9_33

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
High Performance Computing

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-030-34356-9_33
https://doi.org/10.1007/978-3-030-34356-9_33
https://www.research.ed.ac.uk/en/publications/03b6c666-89c5-4c9e-a584-780b832d5735

A study on the performance of reproducible
computations

Nico Bombace! and Michele Weiland!

EPCC, The University of Edinburgh, Bayes Centre, Edinburgh
{n.bombace,m.weiland}@epcc.ed.ac.uk

Abstract. Parallel computations are intrinsically non-reproducible, due
to a combined effect of non-deterministic parallel reductions and non-
associative floating point operations. Different strategies have been pro-
posed in literature to alleviate this issue or eliminate it altogether, how-
ever at present there is no study on the performance impact of associa-
tive floating point operations on large scale applications. In this work, we
implement associative operations using binned doubles in MiniFE, and
perform various performance tests on Cirrus and Fulhame, two state-of-
the-art HPC systems.

Keywords: Reproducibility - Binned doubles - Performance.

1 Introduction

High performance parallel computers play an increasingly impactful role in ev-
eryday life, aiding and accelerating new discoveries in science by leveraging par-
allel programming idioms. However, parallel computing poses a strong challenge
regarding the reproducibility of results, due to the non-deterministic behaviour
of parallel operations together with the non-associativity of floating point oper-
ations.

One of the direct consequences of this phenomenon is the challenge of ver-
ification of parallel applications or libraries, where code is often tested against
an “oracle” solution to detect and eliminate software bugs as early as possible.
However, if the run-to-run behaviour of the code cannot be guaranteed in terms
of reproducibility, bugs can potentially be hidden even in production code [6].

Different methodologies have been proposed to tackle this problem, where
the easiest approach is to freeze the summands before the operation, generally
via sorting. While effective, this method is computationally expensive and ef-
forts have been devoted to designing less expensive methodologies. For instance,
compensated sum techniques [4] introduce an error accumulator which alleviates
the non-reproducibility issue. A bit-reproducible computation of the results can
be guaranteed by designing new floating point operations that are associative by
definition.

In particular, this work will focus on the technique proposed by Ahrens et al.
in [2], in which the notion of binned doubles is introduced. Preliminary studies

10

11

2 N. Bombace et al.

have shown that with respect to a standard double implementation, binned dou-
bles introduce a slowdown of 4x, however this is based only on the dot product
operation. In our work, the proposed binned double is implemented in the Man-
tevo project [3], which is comprised of several mini-apps that represent different
aspects of demanding computations. This study focuses on the MiniFE mini-
app, an implicit finite element solver that supports the use of custom numerical
types. With this set of operations we are able to perform an extensive study on
the performance of reproducible operations. We show that:

1. Binned doubles ensure reproducibility of computations on different architec-
tures,

2. It is possible to use the same code for both doubles and reproducible doubles
using a non-invasive compile-time approach,

3. reproducibility requirements strongly affect performance.

2 Methodology

We provide a binned doubles implementation to use in the MiniFE application,
which forms part of the Mantevo project [3], aimed at the analysis of HPC system
performance. In particular, this mini-app provides a fully fledged implementation
of unstructured finite elements, with support for multi-core operations.

2.1 MiniFE

MiniFE is written in C++ and relies heavily on the use of meta-programming
techniques in the form of templates, which represent a compile-time mechanism
to write generic code not coupled to a particular type [7]. As an example, let us
consider the Vector declaration in MiniFE:

template<typename Scalar,
typename LocalOrdinal,
typename GlobalOrdinal>

struct

Vector{

typedef Scalar ScalarType;
typedef LocalOrdinal LocalOrdinal Type;
typedef GlobalOrdinal GlobalOrdinalType;

-

Listing 1.1. Definition of MiniFE vector.

In Listing 1.1 the type of scalar and the variables used to store the local
and global indexes defined respectively by the template parameters Scalar,
LocalOrdinal and GlobalOrdinal can be swapped at compile time. Moreover,
the types of the template parameters can be retrieved at compile time using
the variables ScalarType, LocalOrdinalType and GlobalOrdinalType. This

A study on the performance of reproducible computations 3

technique provides high design flexibility while avoiding performance issues of
runtime techniques such as inheritance.

MiniFE supports scalar types which implement the standard +, —, %, / oper-
ations as well as additional information required at compile-time: namely the
magnitude_type required to compute the norm of the underlying numerical
value, its name for report purposes and the mpi_type() used in MPI compu-
tations (not active in this work) . Such additional information can be provided
through the specialization of ad-hoc template structures called traits. For exam-
ple, the traits of a built-in C++ double type are defined as:

1 template<>
2> struct TypeTraits<double> {
typedef double magnitude_type;
1 static const charx name() {return “double”;}
s #ifdef HAVE_MPI
¢ static MPI_Datatype mpi-type() {return MPI_DOUBLE;}
7 #endif
s b

Listing 1.2. Double type traits specialization.

In Listing 1.3, it can be noted that the type traits also contain the corre-
sponding MPI datatype. As an example we show the use of such type traits to
resolve, at compile time, the name of the type used in a vector:

1 charx dataName = TypeTraits<
Vector<Scalar,
LocalOrdinal,
1 GlobalOrdinal>::ScalarType>::name();

Listing 1.3. Use of type traits specialization.

MiniFE provides type traits for all C++ built in types, while user defined
types can specialise the TypeTraits structure, as well as overload the basic
+, —, %/ operations.

2.2 Implementation of binned doubles

The original C implementation of binned doubles provided in [2] is modified and
encapsulated in a C++ class template, reproducible: :Double<K>, which calls
the original ReproBLAS [2] functions using overloaded operators. The K param-
eter is an integer that defines the number of bins available for a double. Each
reproducible: :Double<K> contains two private member variables: the original
double, and a std::array<double, 2*K> that contains its binned representa-
tion. One of the tests used to verify the implementation checks that the sum
of all the elements in a vector of reproducible:Double<K> always yields the
same result, no matter how the vector is shuffled. A code snippet of such a test
is shown in Listing 1.4.

1 std::vector<reproducible::Double<3> > reproX;
> std::random_device rd;

4 N. Bombace et al.

3 std:mt19937 g(rd());

s auto reproSuml = std::accumulate(reproX.begin(), reproX.end(), reproducible::
Double<3>(0));

; auto doubleReproSuml = reproSuml.getDouble();

7 std::shuffle(std::begin(reproX), std::end(reproX), g);

auto reproSum2 = std::accumulate(reproX.begin(), reproX.end(), reproducible::
Double<3>(0));

auto doubleReproSum2 = reproSum2.getDouble();

EXPECT_EQ(doubleReproSum1, doubleReproSumz2);

Listing 1.4. Reproducible double Sum.

The reproducible: :Double<K> and the associated TypeTraits cannot be
readily used in the current OpenMP-parallel version of MiniFE, because it uses
atomic and reduction clauses that do not support operator overloading [5]. To
overcome this limitation we propose a modification of the MiniFE mini-app as
follows:

— Substitution of atomic clauses with critical clauses;
— Substitution of reduction clauses, with a combination of a parallel private
reduction and a critical accumulation section as shown in Listing 1.5.

1 #pragma omp parallel for 1 #pragma omp parallel
reduction(+:result) 2 {
> for(int i=0; i<n; ++i) { s MINIFE_SCALAR result_private = 0;
s result += xcoefs[i] * ycoefs[i]; 1+ #pragma omp for nowait
C 3 5 for(int i=0; i<n; ++i) {
6 result_private += xcoefs[i] * ycoefs[i];
.
s Fpragma omp critical
. M
10 result += result_private;
11 }
12 }

Listing 1.5. Original and modified MiniFE comparison. On the left side, parallel
reductions are accomplished using a reduction clause. On the right side, the same
result is achieved using a “parallel for”, which accumulates in a private variable, and
subsequently a critical section accumulates into a global variable.

In order to assess that such changes did not alter the performance of the
code, we benchmarked the original and the modified version of MiniFE using
standard doubles and 180 8-nodes 3D hexahedral elements in every direction.
We used one node of the Cirrus UK National Tier-2 HPC Service at EPCC [1],
which has a total of 280 compute nodes, each with 256 GB of memory and two
2.1 GHz, 18-core Intel Xeon (Broadwell) processors, connected using an Infiband
FDR network using a hyper-cube topology. The compiler used is GCC 6.3.0. The
results are reported in Figure 1 and Figure 1 for Cirrus and Fulhame respectively.

A study on the performance of reproducible computations 5

35
G

30

—&— Original miniFE
—#— Modified miniFE

5 10 15 20 25 30 35
threads

Fig. 1. Comparison of original and proposed modified version of MiniFE. The proposed
modification do not alter the performance of the original code.

Figure 1 reports the runtime of the Conjugate Gradient solver in linear scale.
It is clear that the modifications to the MiniFE mini-app do not change its
performance. In the next section, the run times are compared against the same
application using binned doubles.

3 Comparison of doubles against binned doubles

The modifications to MiniFE provided in the previous section allow the use dif-
ferent scalar types used by MiniFE at compile time, using the TypeTraits struc-
ture and the class template reproducible: :Double<K>. We therefore compiled
and ran MiniFE using reproducible: :Double<3> and the inputs described in
the previous section. Note that for the reproducible MiniFE, all the doubles in
the application are substituted for binned doubles. To verify cross-platform re-
producibility we compiled and ran MiniFe on one node of the Fulhame system at
EPCC, a 64-node Arm-based HPE Apollo70 system, with two 32-core Marvell
ThunderX2 processors and 256GB memory per node. It uses an Infiniband EDR
interconnect with a non-blocking fat tree topology.

3.1 Performance comparison

The performance comparisons are reported in Figures 2, 3, Figures 77, and
Tables 1, 2 for the Cirrus and Fulhame system respectively. There is an average
slowdown of 36z in terms of runtime when using binned doubles, instead of
built-in doubles on Intel architecture, while this gap is reduced to 26z on our
Arm-based system. The log-log plot (Figures 2 shows that the two versions (non-
reproducible and reproducible) of MiniFE follow similar performance trends.

6 N. Bombace et al.

The same information is reported in tabular form in Tables 1 and 2. In terms of
speedup (Figure 3 and Figure 4), the reproducible MiniFE exhibits slight better
scaling when increasing the number of cores.

104

10°

—&— Doubles - Cirrus

—#— Binned Doubles - Cirrus
* — ©& —Doubles - Fulhame

~ - — % —Binned Doubles - Fulhame

10°

10!

threads

102

Fig. 2. Comparison of running time of Conjugate Gradient solver in log-log scale for
built-in doubles and binned doubles with K = 3.

non-reproducible MiniFE reproducible MiniFE
Threads|Time [s]|Residual Norm|N Iterations|Time [s||Residual Norm|N Iterations
1 63.3068 0.2115 391 4193.2 0.1984 350
8 7.5857 0.2089 365 533.7 0.1984 350
12 5.1138 0.2060 363 356.4 0.1984 350
18 3.6689 0.2028 361 238.3 0.1984 350
24 2.8148 0.1970 357 179.4 0.1984 350
32 2.2967 0.1963 359 134.9 0.1984 350
36 2.1214 0.1960 357 120.3 0.1984 350

Table 1. Comparison between non-reproducible and reproducible Mini-FE on Cirrus
using GCC and -O0 compiler flag. The residual is scaled by 17*°.

3.2 Reproducibility

Figure 5 compares the final number of iterations necessary to achieve a pre-
scribed residual norm obtained with doubles (non-reproducible MiniFE) and
binned-doubles (reproducible MiniFE), using the aforementioned version of GCC
compiler, with -O0 compiler flag on Cirrus and Fulhame. The error-bars indicate

A study on the performance of reproducible computations 7

35

25 b

20 - E
—=©— Doubles
—#— Binned Doubles

Speedup Factor

0 I I I I I I I
5 10 15 20 25 30 35

threads

Fig. 3. Comparison of speedup factor of Conjugate Gradient solver for built-in doubles
and binned doubles with K = 3 on Cirrus.

60

Speedup Factor

—&— Doubles
20 —#— Binned Doubles B

0
10 20 30 40 50 60

threads

Fig. 4. Comparison of speedup factor of Conjugate Gradient solver for built-in doubles
and binned doubles with K = 3 on Fulhame.

8 N. Bombace et al.

non-reproducible MiniFE reproducible MiniFE
Threads| Time [s] |Residual Norm|N Iterations|Time [s]|Residual Norm|N Iterations
1 186.6910 0.2115 391 4193.2 0.1984 350
8 22.7928 0.2067 365 533.7 0.1984 350
12 15.3523 0.2047 364 356.4 0.1984 350
18 10.4003 0.2165 361 238.3 0.1984 350
24 7.7301 0.1966 356 179.4 0.1984 350
32 5.9495 0.2015 358 134.9 0.1984 350
36 5.2481 0.1960 358 120.3 0.1984 350
48 3.9851 0.1962 356 90.7 0.1984 350
54 3.7412 0.1968 356 80.8 0.1984 350
64 3.3409 0.1960 356 71.7 0.1984 350

Table 2. Comparison between non-reproducible and reproducible Mini-FE on Fulhame
using GCC and -O0 compiler flag. The residual is scaled by 175,

a 95% confidence interval under the hypothesis of normal distribution, obtained
processing five runs at each fixed number of processes. When using binned dou-
bles, the final number of iterations of the finite element problem is constant and
does not depend on the number of threads or architecture model. When using
built-in doubles however, such values are not constant, and importantly their
behaviour is also not predictable. The same information is reported in tabu-
lar form in Tables 1 and 2. An important detail is given by the serial run of
MiniFE using the standard doubles. In this case the final number of iterations is
indeed reproducible due to the absence of the non deterministic effect of parallel
reductions .

Figure 6 compares the final number of iterations on the same application
but built supplying -O3 flag to the compiler. Differently from the previous case,
there is an effect of the optimization on different platforms, even in the serial run
for standard doubles. However, when using binned doubles, the results confirm
that these yield reproducible results, independent of the degree of parallelism,
platform architecture and build process.

Finally, we investigated the reproducibility of binned doubles when using
different compilers. In particular, we built MiniFE, using both GCC and Clang
compilers on Fulhame. The results shown in Figure 7 demonstrate that standard
doubles reproducibility, contrarily to binned doubles, is affected by the use of
different compilers,

4 Discussion of results

The performance results listed earlier show that using binned doubles results in
is a significant performance hit. This is not unexpected of course as binned dou-
bles are not a native type and crucial compiler optimisations will not be applied
to them in the same way as built-in doubles. However, an important feature of
the approach taken here is its flexibility. The choice of which numerical type to

A study on the performance of reproducible computations 9

395 T T
& —&— Doubles - Cirrus
390 —3F— Binned Doubles - Cirrus 1
— & — Doubles - Fulhame
385 — ¥ —Binned Doubles - Fulhame 4
380
E
2375
El
S 370
[}
4}
0C 365
T
=
i 360
355
350 4
345
10 20 30 40 50 60
threads

Fig. 5. Comparison of final number of Iterations for built-in doubles and binned doubles
with K = 3, on Cirrus and Fulhame with GCC and -O0 flag.

. .
—&— Doubles - Cirrus
—%F— Binned Doubles - Cirrus q
— & — Doubles - Fulhame
— ¥ —Binned Doubles - Fulhame 4

Final Residual Norm

350

*
*
*
o
“
|
|
|
|
|
|
*
|
|
|
I

345 I I I I I I

threads

Fig. 6. Comparison of final number of Iterations for built-in doubles and binned doubles
with K = 3, on Cirrus and Fulhame with GCC and -O3 flag.

10 N. Bombace et al.

395 T T

-é —=&— Doubles - GCC - 03
390 —3%— Binned Doubles - GCC -03 | |
— ¥ — Doubles - CLang
385 — & — Binned Doubles - CLang s

Final Residual Norm
w
~
o
-

10 20 30 40 50 60
threads

Fig. 7. Comparison of final number of Iterations for built-in doubles and binned doubles
with K = 3, on Fulhame with GCC and Clang compilers.

use is taken only at compile time, and it therefore does not impact the software
development process. In this context therefore, binned doubles might be used in
the development of new features and functionalities for existing software. In par-
ticular, we would propose the use of binned doubles as part of the feature testing
and verification process of parallel software development, where performance is
a secondary requirement with respect to correctness. Once a code’s correctness
has been verified, it can be used in production with the default built-in doubles
compile flag enabled. The negative impact on performance is acceptable in that
scenario.

As mentioned earlier, it is worth pointing out that the current version of
MiniFe uses only one numerical type for all the computation phases, which means
that using the compiler flags system the compiler will ”blindly” substitute and
swap the numerical types. This strategy is very aggressive, and we suggest the
use of a multiple compile flags system, where binned doubles are used only in
critical parts of the code. This will decrease the performance penalty while still
achieving reproducible results.

Finally, although a slowdown on the order on 30-40z is not acceptable for
production runs, the use of binned doubles is nevertheless not prohibitively ex-
pensive for full application verification tests. In an environment where testing
the correctness of a full application is critically important, using binned doubles
remains an option.

5 Conclusions and further work

In this paper we have shown the use of binned doubles in a finite element ap-
plication using the MiniFE proxy application. The proposed approach uses a

A study on the performance of reproducible computations 11

compile type parameter to determine the use of built-in doubles or binned dou-
bles. We have validated a modification to the original MiniFE application to
make it compatible with types that overload the arithmetic operators +, —, *, /.
Subsequently, we have created a new C++ class template in the reproducible
namespace reproducible: :Double<K>, which wraps the functionalities of the
ReproBLAS library. The major advantage of this methodology is that the user
of MiniFE can easily switch between customised and built-in types, through
the change of a compile flag, effectively choosing between reproducible and non-
reproducible computations.

While we have experienced a noticeable slowdown in terms of performance,
the use of binned doubles has indeed achieved results which are reproducible
(as evidenced by the final residuals) and independent of the number of parallel
threads or architecture. This result establishes the use of binned doubles in the
verification process of the development cycle, where reproducible results are a
more stringent requirement than performance. Since the proposed methodology
does not require alteration of the source code, but only affects the compilation
flags, in other phases of the development cycle the numerical type used can be
reverted to built-in doubles, which will deliver results in a fraction of the time
(but non-reproducible).

To lower the impact on performance of the binned doubles, we are currently
investigating a mixed double/binned doubles approach, in which binned doubles
will only be used in parts of the code where reproducibility is lost, due to non-
deterministic behaviour of reduction operations or vectorisation. Moreover, we
are investigating the use and impact of reproducible doubles in distributed and
heterogeneous parallel environments, using MPI and mixed-mode parallelism.

6 Acknowledgement

This work used the Cirrus UK National Tier-2 HPC Service at EPCC, funded by
the University of Edinburgh and EPSRC (EP/P020267/1). The Fulhame system
is supplied to the EPCC as part of the Catalyst UK program, a collaboration
with Hewlett Packard Enterprise, Arm and SUSE to accelerate the adoption of
Arm based supercomputer applications in the UK.

References

1. Cirrus UK National Tier-2 HPC service (2019), http://www.cirrus.ac.uk

2. Ahrens, P., Nguyen, H.D., Demmel, J.: Efficient reproducible floating point sum-
mation and blas. Tech. Rep. UCB/EECS-2015-229, EECS Department, University
of California, Berkeley (Dec 2015)

3. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improving
Performance via Mini-applications. Tech. Rep. SAND2009-5574, Sandia National
Laboratories (2009)

4. Kahan, W.: Pracniques: further remarks on reducing truncation errors. Communi-
cations of the ACM 8(1), 40 (1965)

12 N. Bombace et al.

5. OpenMP Architecture Review Board: OpenMP application program interface ver-
sion 3.1 (2001), https://www.openmp.org/wp-content /uploads/OpenMP3.1.pdf

6. Robey, R.W., Robey, J.M., Aulwes, R.: In search of numerical consistency in parallel
programming. Parallel Computing 37(4-5), 217-229 (2011)

7. Vandevoorde, D., Josuttis, N.M.: C++ Templates. Addison-Wesley Longman Pub-
lishing Co., Inc. (2002)

