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Abstract

The capacity of wireless networks is a classic and important topic of study. Informally, the
capacity of a network is simply the total amount of information which it can transfer. In the
context of models of wireless radio networks, this has usually meant the total number of point-to-
point messages which can be sent or received in one time step. This definition has seen intensive
study in recent years, particularly with respect to more accurate models of radio networks such
as the SINR model. This paper is motivated by an obvious fact: radio antennae are (at least
traditionally) omnidirectional, and hence point-to-point connections are not necessarily the best
definition of the true capacity of a wireless network. To fix this, we introduce a new definition
of reception capacity as the maximum number of messages which can be received in one round,
and show that this is related to a new optimization problem we call the Maximum Perfect
Dominated Set (MaxPDS) problem. Using this relationship we give a tight lower bound for
approximating this capacity which essentially matches a known upper bound. As our main
result, we analyze this notion of capacity under game-theoretic constraints, giving tight bounds
on the average quality achieved at any coarse correlated equilibrium (and thus at any Nash).
This immediately gives bounds on the average behavior of the natural distributed algorithm in
which every transmitter uses online learning algorithms to learn whether to transmit.

1 Introduction

A fundamental quantity of a wireless network is its capacity, which informally is just the maximum
amount of data which it can transfer. There is a large literature on analyzing and computing
the capacity of wireless networks under various modeling assumptions, including models of how
interference works and assumptions on how nodes are distributed in space. The last decade has
witnessed a flurry of activity in this area, particularly for worst-case (rather than random) node
distributions, motivated by the ability to apply ideas from multiple areas of theoretical computer
science (approximation algorithms and algorithmic game theory in particular) to these problems.

We continue that line of work in this paper, but with a new definition of capacity. Much of
the research in the last decade (see, e.g., [18, 19, 2, 22, 21, 20, 24, 23]) has used a point-to-point
definition of capacity: given a collection of disjoint pairs (si, ti) of nodes (called the demands), and
some model of interference, the point-to-point capacity is the maximum number of pairs which
can simultaneously successfully transmit a message from si to ti. This is sometimes motivated by
its utility in scheduling: if we are trying to support many unicast demands in a wireless network,
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a natural thing to do is make as much progress as possible in each time step, i.e., maximize the
number of successful transmissions.

But while well-motivated by scheduling, this is not the only possible definition of capacity. In
particular, a natural notion of “capacity” is of the best case: what is the absolute limit on the
usefulness of a network in even the best possible situation? With this intuition, there are two main
issues with point-to-point capacity: the existence of demands, and the requirement for unicast
communication. First, since we want to talk about the capacity of a network, why should the
capacity be a function of any set of input demands (which are, after all, external to the network
itself)? Instead we should allow any set of demands and take the best possible. So one might
instead define the “capacity” of the network to be the maximum number of (si, ti) pairs which can
simultaneously successfully transmit a message, but not restrict (si, ti) to come from any particular
input subset (or equivalently, require the set of input demands to always be V × V where V is the
set of nodes).

Even if we remove the demands, though, there is still something restrictive about this notion
of capacity: it only allows unicast, point-to-point communication. One of the defining features
of traditional wireless networks is that antennas are omnidirectional. Thus, if we want to truly
understand the “capacity” of a given wireless network, we should surely take into account the
ability for a single node to successfully send the same message to many other nodes in one time
slot, since in the best case we can obtain significant benefits from this ability.

For example, suppose we are in a classical radio network represented by a communication graph,
where each node is a transmitter who can communicate with its neighboring nodes. In this model,
interference is destructive: u will receive a message from v if v sends a message, u does not send a
message, and no other neighbor of u sends a message. Suppose that we are given a star topology
with r as the center and leaves x1, . . . , xn. What is the capacity of this network? Traditionally,
the answer would be 1: only one of the unicast links can be successful, since r can only send or
receive one message at a time. On the other hand, if r really only has a single message which it is
trying to send to all of its neighbors, then there can be n successful receptions in a single round,
and hence the capacity should be n.

Motivated by this, we define a new notion of capacity in radio networks which we call the
reception capacity. Informally, this is simply the maximum number of successful message receptions
in a single round. Note that there are no demands, and there is no requirement that different
receptions correspond to different messages. Hence this definition is the true limit on the single-
step “usefulness” of the network. We emphasize that there are many notions of capacity, each of
which is appropriate and interesting in different contexts, and we are not claiming that reception
capacity is the right definition. We are merely claiming that it is a natural definition of “best-
case usefulness”, so bounds on it are bounds on the utility of a network even in the best possible
situation.

In this paper we study this notion of capacity in radio networks. We first show that maximizing
this capacity is equivalent to a new optimization problem we call the Maximum Perfect Dominated
Set (MaxPDS) problem. While this problem as defined is new, we show that the classical Decay
protocol of [4] gives an O(log n)-approximation algorithm. We also give a tight lower bound on its
approximability which matches this upper bound, under plausible complexity assumptions. Both of
these results are with respect to networks defined by general communication graphs (the networks
are not restricted to having any specific structure). Together, these two bounds give us a tight
understanding of the approximability of maximizing the reception capacity.
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The main technical contribution of this paper, though, is the study of the capacity achieved by
self-interested agents. What if every transmitter has its own goals, which do not necessarily align
with the global objective of maximizing the reception capacity? While there are many ways to
model this, we take a first step by considering a natural model in which every transmitter wants
to broadcast its message to as many of its neighbors as possible, but is penalized for unsuccess-
ful transmissions. This intuitively corresponds to a setting where transmitters want to get their
message out to many of their neighbors (e.g., if it is an important piece of information which the
transmitter wants to disseminate) but are discouraged from placing an unnecessary load on the
network if there will be many unsuccessful transmissions.

This type of setting is naturally modeled as a game, where each transmitter is a player that is
trying to maximize its own utility. In such a game, what can we say about the achieved reception
capacity? Does the selfishness of the transmitters mean the network is being underutilized, or do
they naturally arrive at an equilibrium with close to optimal reception capacity? In the unicast
setting, Dinitz [9] showed that equilibria of the related unicast-specific game can be arbitrarily far
from optimal: can the same thing happen with reception capacity?

We completely characterize the behavior of a broad class of equilibria known as ǫ-coarse cor-
related equilibria (ǫ-CCE), which both generalize Nash equilibria and to which natural distributed
online learning algorithms (known as no-regret algorithms) will converge [5]. In particular, for a
network with n nodes, we prove that at every ǫ-CCE the achieved reception capacity of the trans-
mitters is at least Ω(1/

√
n) of the true reception capacity (unlike the unicast setting), and moreover

there exist instances in which every ǫ-CCE achieves reception capacity that is at most O(1/
√
n) of

the true reception capacity.

1.1 Modeling

To model the notion of reception capacity, we consider the classical radio network model. In
this model there is a communication graph G = (V,E), and each node in V can act as either a
transmitter or a receiver. In a given unit of time (we make the standard assumption of synchronous
rounds), each node can either broadcast a message to all of its neighbors, or choose to not broadcast
and thus act as a receiver. Interference is modeled by requiring that a receiver can only receive
one message in each round, or else the messages interfere and cannot be decoded. In other words,
a vertex i can successfully decode a message from a neighbor j if and only if i is not broadcasting
(and so is acting as a receiver), j is broadcasting, and no other neighbor of i is broadcasting. If
multiple neighbors of i are broadcasting then their messages all interfere with each other at i, and
so i would not receive any message.

In this model, the equivalent of the unicast notion of “capacity” used in recent work would be a
maximum induced matching (or if there is a set of input demands, a maximum induced matching
subject to being a subset of the demands). This is because, in the unicast setting, each node
can only transmit to a single neighbor or receive a message from a single broadcasting neighbor.
Therefore, maximizing the unicast capacity is equivalent to finding a set S of broadcasters and a set
T of receivers such that the bipartite subgraph induced by S and T is a matching, and maximizing
the size of this matching.

However, this may be significantly smaller than the number of nodes which can successfully
hear a message, as the star example shows. So we will instead adopt a different notion of capacity:
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Definition 1. The reception capacity of a wireless network is the maximum number of nodes which
can simultaneously successfully receive a message.

We note that this differs from the traditional unicast or multicast setting because there are
no demands from broadcasters to receivers. The reception capacity is rather the total number of
messages that can be received in one round, without any assumptions on whether one node “wants”
to send a message to another node. Thus it is a true upper bound on the “capacity” (usefulness)
of the network.

2 Our Results

2.1 MaxPDS and Approximability

We first observe that it is straightforward to relate reception capacity to reasonably well-studied
notions in graph theory. In particular, since each node successfully receives a message if and only if
it does not broadcast and exactly one of its neighbors does broadcast, we would like each receiver
to be perfectly dominated by the set of broadcasting nodes.

Definition 2. Given a graph G = (V,E) and a set S ⊆ V , we say that a node v ∈ V \S is perfectly
dominated by S if there exists exactly one node u ∈ S such that u is a neighbor of v.

For every subset S ⊆ V , let D(S) = {v : v is perfectly dominated by S}. This immediately lets
us relate the reception capacity to perfect domination.

Lemma 1. The reception capacity of a wireless network G = (V,E) is exactly max
S⊆V

|D(S)|.

Proof. Let S ⊆ V . If every node in S broadcasts a message, by the definition of the radio network
model, a node receives a message if and only if it is in D(S). Hence the reception capacity is
at least maxS⊆V |D(S)|. On the other hand, let S be the set of nodes who transmit when the
reception capacity is achieved, and suppose that v receives a message. Then v ∈ D(S), and hence
the reception capacity is at most maxS⊆V |D(S)|.

Thus computing the reception capacity of a network is equivalent to the following optimization
problem.

Definition 3. Given a graph G = (V,E), the Maximum Perfect Dominated Set Problem
(MaxPDS) is to find a set S ⊆ V which maximizes |D(S)|.

This problem seems to be new, despite the vast literature on variations of dominating sets. It
is superficially similar to the well-studied Minimum Perfect Dominating Set problem [27, 28],
in which the goal is to find the set S of minimum size such that D(S) = V \ S (note that some
such S always exists since we could set S = V ). Despite their superficial similarity, though, the
problems are quite different: in MaxPDS nodes not in S may still not be perfectly dominated, so
both the feasible solutions and the objective functions of the two problems are quite different.

Therefore, our first goal is to characterize the hardness of MaxPDS. We observe that the
classical Decay protocol [4] can be used to obtain a simple O(log(n)) approximation algorithm for
MaxPDS. We compliment this with an essentially matching lower bound for MaxPDS. The
precise lower bound depends on the hardness assumption, but all are essentially polylogarithmic.
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Theorem 2. MaxPDS cannot be approximated to better than a polylogarithmic factor. More
precisely:

• Let ε > 0 be an arbitrary small constant. Suppose that NP 6⊆ BPTIME(2n
ε
). Then there

is no polynomial time algorithm which approximates MaxPDS to within O(logσ n) for some
constant σ = σ(ε).

• Under Feige’s Random 3SAT Hypothesis [14], no polynomial time algorithms approximates
MaxPDS to within O(log1/3−σ n) for arbitrarily small constant σ > 0.

• Under the assumption that the Balanced Bipartite Independent Set Problem (BBIS) cannot
be approximated better than O(nε) for some constant ε > 0 (Hypothesis 3.22 of [8]), there is
no polynomial time algorithm which approximates MaxPDS to within o(log n).

This lower bound is obtained through a connection to the Unique Coverage Problem (UCP).
Informally, UCP is a variation of Maximum Coverage with a similar uniqueness requirement as in
MaxPDS (an element only counts as covered if it is contained in exactly one chosen set). Upper
and lower bounds for UCP are known [8], so we derive our lower bound by reducing from UCP to
MaxPDS (in particular, the different lower bounds and their hardness assumptions are all direct
from equivalent bounds and assumptions for UCP). The lower bound is given in Section 3 and the
upper bound is given in Appendix A.

2.2 Reception Capacity with Self-Interested Agents

The above algorithmic results provide us with a comprehensive understanding of the problem of
maximizing the reception capacity in arbitrary radio networks. However, they do not imply bounds
on the usability of these networks with respect to their reception capacity. That is, for a given
network, we would like to investigate the capacity that is utilized under reasonable behavioral
assumptions. We focus on the model of self-interested agents due to the competitive nature of a
network with fully destructive interference, and because it is a tractable and standard model in the
literature on algorithmic game theory.

Therefore, the main focus of this paper is a natural game-theoretic formalization which we call
the reception capacity game. Informally, this is a game in which the nodes are self-interested players,
and the utility of each node is 0 if it does not transmit, and otherwise is a linear function of the
number of neighbors who successfully heard its message and the number who did not (we define this
game formally in Section 4). In other words, each node gets some positive utility from successfully
transmitting its message to a neighbor, but pays a price for an unsuccessful transmission.

While this game may seem somewhat arbitrary, it is quite natural. Clearly there has to be some
penalty for unsuccessful transmissions, or else the only equilibrium is for all nodes to broadcast
all the time. This motivated the previous work on unicast capacity in which a similar game is
analyzed [2, 9, 3], and in fact our game is the obvious generalization of the earlier unicast capacity
game. It also motivated previous work on clique networks [15], where they analyzed equilibria in
which all nodes were required to transmit with probability strictly smaller than 1. Thus, while it
may not be a perfect model of the incentives of selfish transmitters, it is reasonable in at least some
situations (e.g., if every transmitter is trying to broadcast an advertisement of some kind). More
importantly, it provides insight into the limits of the performance of radio networks in the presence
of self-interested agents.
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When we analyze behavior in a game, the natural approach is to study the quality of the
solution at some notion of equilibrium (this is the well-studied notion of inefficiency of equilibrium
in algorithmic game theory). While the most popular notion of equilibrium to study is the famous
Nash equilibria, we provide stronger results by studying coarse-correlated equilibria (CCE), or more
precisely, approximate versions known as ǫ-CCE. We define these formally in Section 4, but CCE
are generalizations of Nash equilbria, and hence if we can prove that all CCE are close to optimal,
or if we can prove that all CCE are far from optimal, then these bounds immediately hold for Nash
equilibria as well. Moreover, CCE are an important class of equilibria in a distributed context since
(unlike Nash equilibria) natural distributed learning algorithms will have an empirical distribution
of play which converges to a CCE, and thus CCEs can be computed efficiently even in distributed
settings. We note that these equilibria are precisely those analyzed and used in [9, 3] to design
distributed algorithms for unicast capacity. However, it was shown in [9] that in arbitrary graphs,
no nontrivial bounds were possible: there are examples in which there is a solution with Ω(n)
successful transmissions, while any CCE has an average of at most O(1) successful transmissions.
On the other hand, we will prove that even in arbitrary graphs, the expected number of receptions
in any CCE is at most an O(

√
n) factor worse than OPT (the true reception capacity). We will

also show that this is tight by designing instances in which all CCE are Ω(
√
n) worse than OPT.

More formally, we prove the following theorems.

Theorem 3. In any instance of the reception capacity game, the expected number of successful

receptions in any ǫ-CCE is at least OPT · Ω
(

1√
n
− ǫ)

)

.

Theorem 4. There is an instance of the reception capacity game in which in every ǫ-CCE, the
expected number of successful receptions is at most OPT · O((1 + ǫ)/

√
n).

Note that since every Nash equilibrium is a 0-CCE, our bounds immediately imply bounds on
the more classical Price of Anarchy / Stability, in which we compare the optimal solution to the
worst / best Nash. We prove Theorem 3 in Section 4.2 and Theorem 4 in Section 4.3.

Interestingly, like the unicast capacity game studied in [2, 9, 3] but unlike most algorithmic
game theory settings, our notion of “quality” is not the social welfare, i.e., it is not just the sum
of the utilities of the players. Our notion of quality is number of successful receptions, which can
be dramatically different from the social welfare. This means that standard techniques such as
smoothness [26] cannot be used to analyze this game.

2.3 Related Work

2.3.1 Capacity in wireless networks

As discussed earlier, this paper follows an extensive line of work on computing the capacity of
wireless networks. There has been a particular focus on the SINR or physical model, in which we
explicitly reason about the signal strength and interference at each receiver. However, there has
also been significant work directly on graph-based models (e.g., [9]) and on the relationship between
graph models and the SINR model [23] (which shows in particular that graphs can do a surprisingly
good job of representing the physical model, motivating continued study of graph models).

From the perspective of computing the capacity, the most directly related work (and much
of the inspiration for this paper) are [2] and [19], which to a large extent introduced the unicast
capacity problem for worst-case inputs and gave the first approximation bounds. These bounds

6



were improved in a series of papers, most notably including a constant-factor approximation [24],
and have been generalized to even more general models and metrics, e.g. [20, 22].

Much of this paper focuses on analyzing a natural game-theoretic version of reception capacity.
This is directly inspired by a line of work on a related game for unicast capacity, initiated by [2]
and continued in [9, 3]. These papers study various equilibria for the unicast capacity game (Nash
equilibria in [2], coarse correlated equilibria in [9, 3]) and prove what are essentially price of anarchy
or total anarchy bounds (upper bounds on the gap between the optimal capacity and the capacity
at equilibrium).

2.3.2 Radio networks

There is a long line of research on the radio network model under various assumptions. Much of
this work focuses on the radio broadcast problem [7, 6], in which there is a graph representing the
network and a source node s. The problem is to minimize the number of rounds that it takes for
a message, originating at s, to be successfully propogated through the network.

The literature on this model includes many algorithmic results. NP-hardness results were shown
in [7, 13], approximation algorithms were given by [4, 6, 16, 11, 17], and inaproximability results
were given in [25, 1, 10, 12]. Despite the vast work on this problem, reception capacity differs from
the radio broadcast problem in that there we are trying to determine the optimal set of broadcasters
in each round, rather than determining a broadcasting schedule given a set of nodes who are allowed
to transmit.

Nevertheless, some results in the radio network models apply to the case of reception capacity.
In particular, the Decay protocol, introduced as a means of giving an approximation algorithm
to the radio broadcast problem, yields an approximation algorithm for MaxPDS [4] (given in
Appendix A). Another line of work which focuses on testing communication lines between nodes in
networks provides results which imply that MaxPDS is NP-hard. In particular, Even et al. show
a reduction from a similar setting to a variant of the Exact Cover problem (which is a variant of
Set Cover in which each element must be covered by exactly one set) [13]. Their proof can be used
to show that the MaxPDS on bipartite graphs is NP-hard, thus implying hardness for the general
case.

A notable variant of the radio broadcast problem is that of gossiping in radio networks, which
is sometimes called all-to-all communication [17]. This problem studies the number of rounds for
n messages, one originating at each of n nodes, to be propagated through the network. While this
problem shares a closer resemblance to MaxPDS than that of radio broadcasting, we are not aware
of any results that directly imply results for MaxPDS.

2.4 Notation

Given any graph G = (V,E), we refer to undirected graphs with |V | = n. Additionally, for any
vertex v ∈ V , we define N(v) as the open neighborhood of v, that is, N(v) = {u ∈ V : {v, u} ∈ E},
and we let d(v) denote the degree of v.

3 Hardness of Approximation

In this section, we present our hardness of approximation result for the Maximum Perfect
Dominated Set Problem. We begin by defining the Unique Coverage Problem [8].
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Definition 4 ([8]). Given a universe U of elements and a collection S of subsets of U , the Unique
Coverage Problem (UCP) is to find a subcollection S ⊆ S of subsets which maximizes the
number of elements that are uniquely covered, i.e., are in exactly one set of S.

Demaine et al. [8] proved the equivalent of Theorem 2 for UCP (all bounds and assumptions are
exactly the same, just for UCP rather than MaxPDS) and an O(log n)-approximation for UCP.
Because of the similarity between UCP and MaxPDS, we base our lower approximability bound
on UCP, and in particular, show an approximation-preserving reduction from UCP to MaxPDS.

Theorem 5. Assuming UCP cannot be approximated to within O(logc(n)) for some constant c
satisfying Theorem 2, then MaxPDS is hard to approximate to within O(logc(n)).

Proof. Consider an instance of UCP with a universe U of elements and a collection S of subsets of
U . For specified parameters α′, β′, given a subcollection S ′ ⊂ S, we define the following two cases.

1. S ′ is a Yes-instance of UCP if the number of elements uniquely covered is at least α′.

2. S ′ is a No-instance of UCP if the number of elements uniquely covered is less than β′.

Given an instance of this problem, construct an undirected bipartite graph G′ = (V ′, E′) such
that V ′ consists of a vertex si for each set Si ∈ S and a vertex xi for each element ei ∈ U. Let
{si, xj} ∈ E′ if ej ∈ Si. Let A denote the set of vertices si corresponding to sets in S, and let B
denote the vertices corresponding the elements in U.

Construct a new bipartite graph G = (V,E) such that V consists of A and k copies of B,
denoted B1, B2, . . . , Bk. Let V have an additional vertex v that is adjacent to all vertices in A. Let
E consist of k copies of E′, one for each bipartite subgraph over (A,Bi) for all i ∈ [k].

Consider some solution S ′ to the UCP instance. Define D = {si : Si ∈ S ′} ∪ {v}. If S ′ is a
Yes-instance of UCP, then the number of vertices perfectly dominated by D is α ≥ α′k, because
in each of the Bi, there are at least α′ perfectly dominated vertices. On the other hand, if S ′ is a
No-instance of UCP, then there are only β < |S|+ kβ′ vertices perfectly dominated by D, because
{si : Si ∈ S ′} perfectly dominates less than kβ′ of the vertices in the Bi and v perfectly dominates
the |S| vertices in A.

Now, set k = |S| . Then α ≥ α′ |S| = α′k and β < |S|+ |S|β′ = k+ kβ′ = k(β′ +1). Therefore,
the approximation ratio for MaxPDS in this setting is α

β > α′k
k(β′+1) = α′

β′+1 ≥ α′

2β′ when β′ ≥ 1,

which is trivially true. Since all we have done is create |S| repetitions of B, this can be done in
polynomial time.

Therefore, this reduction begins with an instance of UCP with an approximation ratio of α′

β′

and transforms the problem into an instance of MaxPDS with an approximation ratio of α
β . Let

n′ be the size of the input to this reduction, and let n be the size of the resulting instance of
MaxPDS. By assumption, α′

β′ = Ω(logc(n′)). Therefore, we want to show that α
β = Ω(logc(n)). We

start with n′ = |S|+ |E′| and we end with n = |S|+ k |E′|. Then n = |S|+ k |E′| = |S|+ |S| |E′| =
|S| (1 + |E′|) ≤ 2 |S| |E′| < 2(n′)2, and hence logc(n) ≤ logc(2(n′)2) ≤ 4c logc(n′), implying that
logc(n′) ≥ 1

4c log
c(n). Therefore, α

β ≥ α′

2β′ ≥ 1
2 log

c(n′) ≥ 1
4c+1 log

c(n) = Ω(logc(n)) as desired, thus
showing that MaxPDS is hard to approximate to within O(logc(n)).

This reduction from UCP to MaxPDS shows that MaxPDS is hard to approximate to within
O(logc(n)) under any hardness assumption for which UCP is hard to approximate to within
O(logc(n)). In particular, this holds for the three different hardness assumptions used to show
the hardness of approximating UCP in [8], thus proving Theorem 2.
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4 The Reception Capacity Game

In this section, we study reception capacity as a game in a distributed setting with self-interested
players. Formally, an instance of the reception capacity game is represented by a graph G =
(V,E), where we let V = [n] represent the players. Each player has two actions: broadcast
(represented by 1) or be silent (represented by 0). Let S = {0, 1}n be the strategy space, where
for each s ∈ S, si represents the action of player i for each i ∈ [n]. For any s, if si = 1 define

ri(s) =
∣

∣

∣

{

j ∈ N(i) : sj = 0 ∧∑k∈N(j) sk = 1
}∣

∣

∣
as the number of neighbors of i not broadcasting

and receiving exactly one message under s, and if si = 0, let ri(s) = 0. That is, when i broadcasts,
ri(s) is the number of neighbors of i that successfully receive its message, and |N(i)| − ri(s) is
the number of neighbors of i that are either broadcasting or receiving multiple messages, and thus
result in a failure for i. With this notation, we can define the reception capacity game.

Definition 5. For constants c, d ≥ 1, an instance of the reception capacity game is given by a graph
G = (V,E). The utility for player i is ui : S → Z, defined by ui(s) = c · ri(s)− d · (|N(i)| − ri(s))
if si = 1, and ui(s) = 0 otherwise.

This game intuitively models the fact that each node would like to send its message to its
neighbors, and gets a benefit proportional to the number of successes but with a penalty for
failures (possibly due to either the cost of wasting the transmission power, or more altruistically, a
payment for the interference caused). The parameters c and d provide a means by which to model
a difference between the reward of a successful broadcast and the cost of a failure (in the simplest
case we can think of c = d = 1).

Definition 6. A coarse correlated equilibrium (CCE) is a distribution over S such that in expec-
tation, no player has any incentive to deviate. Formally, p is a CCE if for any i ∈ [n] and any
s′i ∈ {0, 1}, Es∼p [ui(s)] ≥ Es∼p [ui(s−i, s

′
i)], where s−i, s

′
i is a vector formed by replacing the i’th

coordinate of s with s′i.

Clearly any Nash equilibrium is a CCE, but a CCE is not necessarily a Nash since every Nash
is a product distribution over S while a CCE does not have to be a product distribution. This
definition can be relaxed to that of an approximate CCE. In particular, we say that p is an ǫ-CCE if
for any i ∈ [n] and any s′i ∈ {0, 1}, it holds that Es∼p [ui(s)] ≥ Es∼p [ui(s−i, s

′
i)]−ǫ. Note that a true

CCE is a 0-CCE, and in the reception capacity game, every distribution over S is a (c+ d)n-CCE.

4.1 Notation

In the following sections, we let G = (V,E) with V = [n] be an instance of the reception capacity
game. Without loss of generality we assume that G is connected, since the results below directly
extend to the case whereG is disconnected by applying the upper and lower bound to each connected
component. We next define a few important sets and quantities.

For every s ∈ S, we will let B(s) = {i ∈ [n] : si = 1} be the vertices which are broadcasting,
R(s) = {i ∈ [n] : si = 0 ∧∑j∈N(i) sj = 1} be the vertices which are successfully receiving a
transmission, F (s) = {i ∈ [n] : si = 0 ∧∑j∈N(i) sj ≥ 2} be the vertices which are receiving
at least two transmissions (and thus are failing to successfully receive any transmission), and
A(s) = {i ∈ [n] : si = 0 ∧∑j∈N(i) sj = 0} be the vertices which are neither broadcasting nor
receiving any message.
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Let p be a distribution over S which is an ǫ-CCE. Note that ǫ ≥ 0 without loss of generality, since
if ǫ ≤ 0 then we are at a true CCE and so are at a 0-approximate CCE. With respect to p, we can
define B =

∑

s∈S p(s)|B(s)| as the expected number of broadcasters, R =
∑

s∈S p(s)|R(s)| as the
expected number of successful receptions (note that this is the quantity which we are trying to com-
pare to OPT), F =

∑

s∈S p(s)|F (s)| as the expected number of failures, and A =
∑

s∈S p(s)|A(s)|
as the expected number of nodes who neither broadcast nor hear a transmission.

4.2 Lower Bound on Successful Receptions

In this section we prove Theorem 3 by showing a lower bound on the expected number of successful
receptions in any ǫ-CCE, i.e., showing that the quality of any CCE is not too far from OPT.

We begin with some lemmas that let us relate B and F to R, but for which we need some more
notation. Recall that for every s ∈ S and i ∈ [n], we defined ri(s) = |R(s) ∩ N(i)| if si = 1 and
ri(s) = 0 if si = 0. In other words, if i is broadcasting in s, then ri(s) is the number of its neighbors
that successfully receive its message, and otherwise ri(s) is 0. Similarly, let fi(s) = |F (s)∩N(i)| if
si = 1 and let fi(s) = 0 if si = 0, and let bi(s) = |B(s) ∩N(i)| if si = 1 and let bi(s) = 0 if si = 0.

Since p is an ǫ-CCE we know that every vertex i gets expected utility that is at least −ǫ,
since otherwise it would have incentive to get utility 0 by never broadcasting. The expected
utility of vertex i under p is precisely

∑

s∈S p(s) (c · ri(s)− d(fi(s) + bi(s))), since if si = 0 then
c · ri(s)− d(fi(s) + bi(s)) = 0 which is the utility obtained by i by not broadcasting, while if si = 1
then ri(s) is exactly the number of neighbors that successfully receive i’s message, and fi(s)+ bi(s)
is the number of neighbors of i that are either broadcasting or receiving multiple messages, and
thus do not successfully receive i’s transmission. Thus, for every i ∈ [n] it holds that

∑

s∈S
p(s) (c · ri(s)− d(fi(s) + bi(s))) ≥ −ǫ. (1)

We proceed by using this to relate B and F to R.

Lemma 6. B ≤ c+d
d · R+ ǫn

d .

Proof. For any s ∈ S and i ∈ [n], clearly if si = 1 then ri(s)+fi(s)+bi(s) = |N(i)| (since every neigh-
bor of i either successfully receives i’s transmission or fails because it is broadcasting or also receiving
another transmission). Therefore, (1) implies that

∑

s∈S p(s)si (c · ri(s)− d(|N(i)| − ri(s))) ≥ −ǫ,
and thus

∑

s∈S p(s)si ((c+ d)ri(s)− d) ≥ −ǫ (since |N(i)| ≥ 1). Rearranging, we get that

(c+ d)
∑

s∈S
p(s)ri(s) = (c+ d)

∑

s∈S
p(s)siri(s) ≥ d

∑

s∈S
p(s)si − ǫ.

We can now use this to bound the expected number of broadcasters:

B =
∑

s∈S
p(s)|B(s)| =

∑

s∈S
p(s)

n
∑

i=1

si =
n
∑

i=1

∑

s∈S
p(s)si

≤
n
∑

i=1

(

c+ d

d

∑

s∈S
p(s)ri(s) +

ǫ

d

)

=
c+ d

d

n
∑

i=1

∑

s∈S
p(s)ri(s) +

ǫn

d
=

c+ d

d

∑

s∈S
p(s)

n
∑

i=1

ri(s) +
ǫn

d
.
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Since every successful reception can be uniquely attributed to a single transmitter, we know that
∑n

i=1 ri(s) = |R(s)| for every s ∈ S. Thus we get that B ≤ c+d
d

∑

s∈S p(s)|R(s)|+ ǫn
d = c+d

d ·R+ ǫn
d ,

as claimed.

Lemma 7. F ≤ c
2d ·R+ ǫn

2d .

Proof. For any s ∈ S, note that every failure is due to a collision between at least two messages.
Thus |F (s)| ≤ 1

2

∑n
i=1 fi(s). Moreover, we know from (1) that

∑

s∈S p(s) · d · fi(s) ≤
∑

s∈S p(s)(c ·
ri(s)− d · bi(s)) + ǫ ≤∑s∈S p(s) · c · ri(s) + ǫ for all i ∈ [n]. Putting this together, we get that

F =
∑

s∈S
p(s)|F (s)| ≤ 1

2

∑

s∈S
p(s)

n
∑

i=1

fi(s) =
1

2

n
∑

i=1

∑

s∈S
p(s)fi(s)

≤ 1

2

n
∑

i=1

1

d

(

∑

s∈S
c · p(s)ri(s) + ǫ

)

=
c

2d

n
∑

i=1

∑

s∈S
p(s)ri(s) +

ǫn

2d

=
c

2d

∑

s∈S
p(s)

n
∑

i=1

ri(s) +
ǫn

2d
=

c

2d

∑

s∈S
p(s)|R(s)|+ ǫn

2d
=

c

2d
R+

ǫn

2d
.

The quantity A is more difficult to bound, and will require us to split the nodes into two sets:
nodes with large contribution to A, and nodes whose contribution to A is bounded. In particular,

define a = (d+ 2
3c+ǫ)/(c+d), which will be the threshold. Let X =

{

i ∈ [n] :
∑

s∈S:i∈A(s) p(s) > a
}

be the nodes which contribute a significant amount to A. Note that if ǫ > 1
3c then X is empty. Let

Y = V \X. Let dXi = |N(i) ∩X| and let dYi = |N(i) ∩ Y |. We begin with a simple equation which
follows directly from the fact that p is an ǫ-CCE.

Lemma 8. For every i ∈ [n], it holds that

c ·
∑

j∈N(i)

∑

s∈S:
si=0∧j∈A(s)

p(s) ≤ d ·
∑

j∈N(i)

∑

s∈S:
si=0∧j 6∈A(s)

p(s) + ǫ.

Proof. Let i ∈ [n]. Note that for any s ∈ S with si = 0, if node i were to transmit, then every
neighbor in A(s) would result in a successful reception while every neighbor that is not in A(s) (i.e.,
every neighbor in B(s) ∪ R(s) ∪ F (s)) would result in a failed reception. Formally, we have that
Es∼p [ui(s−i, 1)] =

∑

s∈S:si=0 p(s)(c · |N(i) ∩A(s)|−d · |N(i) \ A(s)|) +
∑

s∈S:si=1 p(s)ui(s), and the
second summations is equal to Es∼p [ui(s)], because i gets utility 0 if si = 0. By the definition of an
ǫ-CCE we know that Es∼p [ui(s−i, 1)]−Es∼p [ui(s)] ≤ ǫ, and thus c ·∑s∈S:si=0 p(s) |N(i) ∩A(s)| ≤
d ·∑s∈S:si=0 p(s) |N(i) \ A(s)|) + ǫ. Rearranging each sum gives the lemma.

Now we can use this lemma to prove some relationships between X and Y .

Lemma 9. For every i ∈ [n], it holds that d · dYi ≥ dXi (a(c + d)− d)− ǫ.

Proof. We bound both sides of the inequality in Lemma 8. First, we have that

∑

j∈N(i)

∑

s∈S:
si=0

∧j∈A(s)

p(s) ≥
∑

j∈N(i)∩X

∑

s∈S:
si=0

∧j∈A(s)

p(s)
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=
∑

j∈N(i)∩X

∑

s∈S:
j∈A(s)

p(s) ≥
∑

j∈N(i)∩X
a = a · dXi ,

where we used the fact that for j ∈ N(i), if j ∈ A(s) for some s ∈ S then si = 0. On the other
hand,

∑

j∈N(i)

∑

s∈S:
si=0∧j 6∈A(s)

p(s) =
∑

j∈N(i)∩X

∑

s∈S:
si=0∧j 6∈A(s)

p(s) +
∑

j∈N(i)∩Y

∑

s∈S:
si=0∧j 6∈A(s)

p(s)

≤
∑

j∈N(i)∩X

∑

s∈S:
j 6∈A(s)

p(s) +
∑

j∈N(i)∩Y
1

<
∑

j∈N(i)∩X
(1− a) + dYi = (1− a) · dXi + dYi .

Therefore, we can combine these two inequalities with Lemma 8 to get that ac · dXi ≤ d(1− a)dXi +
d · dYi + ǫ. Therefore, we get that d · dYi ≥ dXi (a(c + d)− d)− ǫ, which concludes the proof.

Lemma 10. Let i ∈ X. Then dYi ≥ 1.

Proof. Let i ∈ X. Suppose that dYi = 0. Lemma 9 then implies that ǫ ≥ |N(i)| (a(c+d)−d) ≥ 2
3c+ǫ

because |N(i)| ≥ 1, which is a contradiction.

With these lemmas we can now show that R must be large.

Theorem 11. R ≥ Ω
(

cd
(c+d)5/2

√
n− ǫ

c+dn
)

.

Proof. The theorem is trivially true when ǫ ≥ 1
6c, since for sufficiently large n the right hand side

becomes negative. Thus we will assume that ǫ < 1
6c (which implies that a < 1).

Our first step is to bound |Y |. We get that

n = |Y |+ |X| ≤ |Y |+
∑

i∈X
dYi = |Y |+

∑

i∈Y
dXi (by Lemma 10)

≤ |Y |+
∑

i∈Y

(

d

a(c+ d)− d
· dYi +

ǫ

a(c+ d)− d

)

(by Lemma 9)

≤ a(c+ d) + ǫ

a(c+ d)− d
|Y |2 =

2
3c+ d+ 2ǫ

2
3c+ ǫ

|Y |2 < O
(

(c+ d) |Y |2
)

and thus |Y | ≥ Ω
(
√

n
c+d

)

. We now relate |Y | to R. Note that for every node i ∈ Y , it holds that
∑

s∈S:i 6∈A(s) p(s) > 1− a. Thus

(1− a)|Y | ≤
∑

i∈Y

∑

s∈S:i 6∈A(s)

p(s) ≤
∑

i∈[n]

∑

s∈S:i 6∈A(s)

p(s) =
∑

s∈S
(n− |A(s)|) · p(s)

=
∑

s∈S
(|B(s)|+ |R(s)|+ |F (s)|) · p(s) = B +R+ F
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≤
(

c+ d

d
+ 1 +

c

2d

)

R+
2ǫn

d
=

3c+ 4d

2d
· R+

2ǫn

d
,

where we use Lemma 6 to bound B and Lemma 7 to bound F . Therefore

R = Ω

(

d(1− a)

c+ d
|Y | − ǫn

c+ d

)

= Ω

(

cd

(c+ d)2
|Y | − ǫn

c+ d

)

= Ω

(

cd

(c+ d)5/2
√
n− ǫ

c+ d
n

)

,

as claimed.

This immediately gives Theorem 3: since OPT ≤ n and c and d are constants, Theorem 11

implies that R ≥ Ω
(

n
(

1√
n
− ǫ
))

≥ Ω
(

OPT

(

1√
n
− ǫ
))

.

4.3 Upper Bound on Successful Receptions

We now prove Theorem 4 by upper bounding the expected number of successful receptions in any
ǫ-CCE in a specific instance of the reception capacity game.

Theorem 12. There exists an instance of the reception capacity game with R ≤ O ((c+ d+ ǫ)
√
n) .

Proof. For any q ∈ N, let G = (V,E) be a graph composed of n = dq(3cq + 1) + 3cq + 1 =
3cdq2 + dq + 3cq + q + 1 vertices, defined as follows. Let V = K ∪ L and L =

⋃

i∈[3cq+1] Li, where
K is a clique on 3cq + 1 vertices, and for each i ∈ K, the set Li is an independent set of size dq
such that vi is adjacent to each vertex in Li.

We proceed by bounding the value of any ǫ-CCE. More formally, if p is a distribution over S
which is an ǫ-CCE, we need to bound R =

∑

s∈S p(s)|R(s)|. It is easy to see that a vertex in Li

successfully receives a message if and only if it does not broadcast and vertex i ∈ K does broadcast,
and thus

∑

s∈S
p(s)|R(s)| ≤

∑

s∈S
p(s)

(

|K|+
∑

i∈K
|Li|si

)

=
∑

s∈S
p(s)

(

3cq + 1 +
∑

i∈K
dqsi

)

= 3cq + 1 + dq
∑

i∈K

∑

s∈S
p(s)si,

so we just need to bound
∑

i∈K
∑

s∈S p(s)si. To do this, we partition the strategy vectors into
“good” vectors (where i might have positive utility), “bad” vectors (where i has negative utility),
and “irrelevant” vectors (where i has zero utility). Formally, we partition S into the following three
sets:

Gi = {s ∈ S : si = 1 ∧
∑

j∈K
sj = 1}

Bi = {s ∈ S : si = 1 ∧
∑

j∈K
sj ≥ 2}

Ii = {s ∈ S : si = 0}

If s ∈ Gi then i broadcasts a message which is successfully heard by all K and by at most all nodes
in Li. On the other hand, if s ∈ Bi, then i broadcasts a message which may be heard successfully
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by all nodes in Li but which results in a failure at all nodes in K \ {i}. Thus the expected utility
of i under ǫ-CCE p is at most

∑

s∈Gi

p(s)(3cq + dq)c+
∑

s∈Bi

p(s)(−3cqd + dqc)

= (3c+ d)cq
∑

s∈Gi

p(s)− 2cqd
∑

s∈Bi

p(s).

Since p is an ǫ-CCE we know that this expected utility must be at least −ǫ, since i can receive
utility 0 by not broadcasting. Then we can rearrange to get

∑

s∈Bi
p(s) ≤ 3c+d

2d

∑

s∈Gi
p(s) + ǫ

2cdq .
We can now use this inequality to get our desired bound:

∑

i∈K

∑

s∈S
p(s)si =

∑

i∈K





∑

s∈Gi

p(s) +
∑

s∈Bi

p(s)





≤
∑

i∈K





ǫ

2cdq
+

(

3c+ d

2d
+ 1

)

∑

s∈Gi

p(s)





=
ǫ · (3cq + 1)

2cdq
+

3c+ 3d

2d

∑

i∈K

∑

s∈Gi

p(s) ≤ ǫ · (3cq + 1)

2cdq
+

3(c + d)

2d
.

The last inequality is because Gi ∩Gj = ∅ for i, j ∈ K with i 6= j by the definition of Gi and Gj ,
and thus

∑

i∈K
∑

s∈Gi
p(s) ≤ 1. Therefore, we get that

R ≤ 3cq + 1 + dq

(

ǫ · (3cq + 1)

2cdq
+

3(c + d)

2d

)

= 3cq + 1 +
ǫ(3cq + 1)

2c
+

3

2
q(c+ d) =

9

2
cq + 1 +

3

2
qǫ+

ǫ

2c
+

3

2
dq.

Since n ≥ 3cdq2 we know that q ≤ √
n, and thus this shows that any ǫ-CCE has value at most

O((c+ d+ ǫ)
√
n) = O((c+ d+ ǫ)

√
n).

This immediately implies Theorem 4 as a corollary.

5 Open Questions

We hope that this is only the beginning of analyzing the reception capacity of wireless networks.
Many interesting open questions remain, paralleling the work on unicast capacity. For example,
what if we consider restricted classes of graphs, such as unit-disc graphs, which are typically used
to model wireless networks? Does MaxPDS become easier, and are equilibria in the reception
capacity game closer to optimum? And what happens if we work in the SINR model rather than
the graph model? For the unicast capacity game, [9] showed that arbitrary graphs are very easy
to analyze but the SINR setting is more complicated. Can we analyze the Price of Anarchy of the
reception capacity game in the SINR model?
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A Approximation Algorithm for MaxPDS

In this section, we give an approximation algorithm for MaxPDS. Despite the similarities between
MaxPDS and UCP, we remark that degenerate cases prevent us from presenting it as a black-box
reduction to UCP by invoking the approximation algorithm given by Demaine et al. for UCP.
Nevertheless, we observe that the classical decay protocol of Bar-Yehuda et al. for transmitting
in radio networks [4] yields a simple approximation algorithm for MaxPDS. We note that the
resulting algorithm is also a straightforward adaptation of that of [8] for UCP.

The decay protocol is given in the classical radio broadcasting setting, where transmissions occur
over multiple rounds, and there is a subset B of nodes that have already received the message. The
decay protocol, for every node in B, is the following: for each round i, broadcast to all neighbors;
then, with probability 1

2 , continue to the next round and otherwise stop transmitting. In [4], they
observe that for any node v, with constant probability there is a round in which exactly one of v’s
neighbors will broadcast, and thus v will successfully receive the message (with high probability).
This can be modified to a single-round protocol by having each node broadcast with probability 1/2i

for some i ∈ [log(n)]. By setting i appropriately, we obtain an O(log(n)) randomized approximation
algorithm.

For completeness, we prove the following theorem.

Theorem 13. There is a polynomial time O(log(n))-approximation algorithm for MaxPDS.

Proof. Let G = (V,E) be an instance of MaxPDS with |V | = n. For any set S of vertices, let
f(S) = |D(S)| denote the number of perfectly dominated vertices by S. Let ALG be an initially
empty set and let OPT denote the optimal set of dominating vertices in the above instance.

Partition the vertices into log(n) groups Gi such that v ∈ Gi if 2
i ≤ d(v) < 2i+1. Then there

must exist a group i⋆ such that |Gi⋆ | ≥ 1
log(n) · n ≥ 1

log(n) · f(OPT) since f(OPT) ≤ n.
Our solution ALG is now constructed by randomly adding each vertex v to ALG independently

with probability 1
2i⋆

when i⋆ > 0, and with probability 1
2 when i⋆ = 0.

Let S ⊂ V be the vertices that are perfectly dominated by ALG. For any vertex v ∈ Gi⋆ ,
let d = d(v) ∈ [2i

⋆
, 2i

⋆+1). Then, the probability that v is perfectly dominated by ALG is the
probability that exactly one of N(v) is in ALG and the remaining vertices in N(v) are not in ALG.
Since each vertex is chosen to be in ALG independently, when i⋆ > 0 we have that

Pr [v ∈ S] =

(

d · 1

2i⋆

)(

1− 1

2i⋆

)d−1

≥
(

1− 1

2i⋆

)2i
⋆
+1−1

≥
(

1− 1

2i⋆

)2i
⋆
+1

≥ 1

e4
.

When i⋆ = 0, then d = 1 and Pr [v ∈ S] =
(

d · 1
2

) (

1− 1
2

)d−1
= 1

2 ·
(

1
2

)0
= 1

2 . Therefore,

E [f(ALG)] =
∑

v∈V
Pr [v ∈ S] ≥

∑

v∈Gi⋆

Pr [v ∈ S] ≥ min

{

1

e4
,
1

2

}

|Gi⋆ |

≥ 1

e4 log(n)
f(OPT).

Therefore, f(OPT)
E[f(ALG)] = O(log(n)) as desired.
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Note that while the above algorithm is randomized, it is straightforward to derandomize in
polynomial time using the standard method of conditional expectations.
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