Skip to main content

Transformations, Mappings, and Data Summaries

  • Chapter
  • First Online:
Book cover Foundations of Data Visualization
  • 2021 Accesses

Abstract

Fundamentally, data visualization is the process of placing dabs of ink or color on a 2D plane. However, the complexity of data is increasing so that we see large numbers of instances, dimensions, parameters, etc. Such data surpasses what can readily be shown on a 2D or 3D display. One solution to this challenge is the development of better or more complex interfaces, that include, for instance, linked views, large displays, dynamic visualizations, and sophisticated user interactions. The alternative and complementary approach is to develop sets of mathematical and statistical tools to transform, map, or summarize data and thereby reduce its complexity so that visualization and understanding of large and complex becomes more feasible. The role of visualization research, in this case, is to identify common use cases and develop methods and tools that can readily be adapted to particular applications. To address the challenges of complexity in the data, previous works have proposed reducing items and attributes and associated visualization conventions and practices. Here we take deeper (and complementary) look at the analytical frameworks and approaches for transforming data into forms that are appropriate for display devices, considered generally. The approach in this chapter is to begin by characterizing different types of data in a way that is well suited for this discussion. We will then focus on a few particular classes of data and different ways of summarizing and transforming data of those types. Finally, we will broaden the discussion to other types of data and how they map into the various methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anscombe, F.J.: Graphs in statistical analysis. Am. Stat. 27(1), 17–21 (1973). http://www.jstor.org/stable/2682899

  2. Bihan, D.L., Mangin, J., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Google Scholar 

  4. Carlsson, G.: Topology and data. AMS Bull. 46(2), 255–308 (2009)

    Google Scholar 

  5. Cates, J.E., Whitaker, R.T., Jones, G.M.: Case study: an evaluation of user-assisted hierarchical watershed segmentation. Med. Image Anal. 9(6), 566–578 (2005)

    Google Scholar 

  6. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1277–1284 (2008). https://doi.org/10.1109/TVCG.2008.135

  7. Eberly, D.: Ridges in Image and Data Analysis. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: SCG’03: Proceedings of the 19th Annual Symposium on Computational Geometry, pp. 361–370. ACM, New York, NY, USA (2003)

    Google Scholar 

  10. Engel, K., Hadwiger, M., Kniss, J.M., Rezk-Salama, C., Weiskopf, D.: Real-Time Volume Graphics. A. K. Peters Ltd., Natick (2006)

    Google Scholar 

  11. Falk, M., Hotz, I., Ljung, P., Treanor, D., Ynnerman, A., Lundström, C.: Transfer function design toolbox for full-color volume datasets. In: Proceedings of the IEEE PacificVis’17 (2017)

    Google Scholar 

  12. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 16(6), 1271–1280 (2010)

    Google Scholar 

  13. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2013)

    Google Scholar 

  14. Gretarsson, B., O’Donovan, J., Bostandjiev, S., Höllerer, T., Asuncion, A.U., Newman, D., Smyth, P.: Topicnets: visual analysis of large text corpora with topic modeling. ACM TIST 3, 23:1–23:26 (2012)

    Google Scholar 

  15. Günther, T., Theisel, H.: The state of the art in vortex extraction. Comput. Graph. Forum 37(6), 1–24 (2018)

    Google Scholar 

  16. Hadwiger, M., Kratz, A., Sigg, C., Bühler, K.: GPU-accelerated deep shadow maps for direct volume rendering. In: Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH’06, pp. 49–52. ACM, New York, NY, USA (2006)

    Google Scholar 

  17. Helman, J.L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11, 36–46 (1991)

    Google Scholar 

  18. Hernell, F., Ljung, P., Ynnerman, A.: Interactive global light propagation in direct volume rendering using local piecewise integration. In: Eurographics/IEEE VGTC Symposium on Volume and Point-Based Graphics, pp. 105–112. Eurographics Association (2008)

    Google Scholar 

  19. Hotz, I., Feng, L., Hagen, H., Hamann, B., Jeremic, B., Joy, K.I.: Physically based methods for tensor field visualization. In: VIS’04: Proceedings of IEEE Visualization 2004, pp. 123–130. IEEE Computer Society Press (2004)

    Google Scholar 

  20. Jönsson, D., Kronander, J., Ropinski, T., Ynnerman, A.: Historygrams: enabling interactive global illumination in direct volume rendering using photon mapping. IEEE Trans. Vis. Comput. Graph. 18(12), 2364–2371 (2012)

    Google Scholar 

  21. Jönsson, D., Sundén, E., Ynnerman, A., Ropinski, T.: A survey of volumetric illumination techniques for interactive volume rendering. Comput. Graph. Forum 33(1), 27–51 (2014)

    Google Scholar 

  22. Kasten, J., Reininghaus, J., Hotz, I., Hege, H.C., Noack, B.R., Daviller, G., Morzynski, M.: Acceleration feature points of unsteady shear flows. Arch. Mech. 68(1), 55–80 (2016)

    MATH  Google Scholar 

  23. Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, pp. 147–154 (2004)

    Google Scholar 

  24. Kindlmann, G., San Jose Estepar, R., Smith, S.M., Westin, C.F.: Sampling and visualizing creases with scale-space particles. IEEE Trans. Vis. Comput. Graph. 15(6), 1415–1424 (2009)

    Google Scholar 

  25. Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: VIS’01: Proceedings of the Conference on Visualization’01, pp. 255–262. IEEE Computer Society (2001)

    Google Scholar 

  26. Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)

    Google Scholar 

  27. Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: moving beyond the symmetric positive-definite case. Comput. Graph. Forum - State Art Rep. 32(1), 49–74 (2013)

    Google Scholar 

  28. Kratz, A., Auer, C., Hotz, I.: Tensor invariants and glyph design. In: Westin, C., Burgeth, B., Vilanova, A. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-valued Data (Dagstuhl’11), Mathematics and Visualization, pp. 17–33. Springer (2014)

    Google Scholar 

  29. Kratz, A., Schöneich, M., Zobel, V., Burgeth, B., Scheuermann, G., Hotz, I., Stommel, M.: Tensor visualization driven mechanical component design. In: Proceedings of Pacific Vis Conference (2014)

    Google Scholar 

  30. van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., Schikore, D.: Contour trees and small seed sets for isosurface traversal. In: SCG’97 Proceedings of the 13th Annual Symposium on Computational Geometry (1997)

    Google Scholar 

  31. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data advances in the past decade. In: Borgo, R., Ganovelli, F., Viola, I. (eds.) Eurographics Conference on Visualization (EuroVis) - STARs, pp. 127–147. The Eurographics Association (2015)

    Google Scholar 

  32. Ljung, P., Krüger, J., Gröller, E., Hadwiger, M., Hansen, C.D., Ynnerman, A.: State of the art in transfer functions for direct volume rendering. In: Maclejewsk, R., Ropinski, T., Vilanova, A. (eds.) Computer Graphics Forum - STAR, vol. 35, p. 23 (2016)

    Google Scholar 

  33. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM SIGGRAPH Computer Graphics and Interactive Techniques, pp. 163–169 (1987)

    Google Scholar 

  34. Maadasamy, S., Doraiswamy, H., Natarajan, V.: A hybrid parallel algorithm for computing and tracking level set topology. In: Proceedings of the 19th International Conference on High Performance Computing, pp. 1–10 (2012). https://doi.org/10.1109/HiPC.2012.6507496

  35. Maciejewski, R., Chen, W., Woo, I., Ebert, D.: Structuring feature space - a non-parametric method for volumetric transfer function generation. IEEE Trans. Vis. Comput. Graph. 15(6), 1473–1480 (2009)

    Google Scholar 

  36. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 207(1167), 187–217 (1980)

    Google Scholar 

  37. McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. Comput. Graph. Forum - State Art Rep. 29(6), 1807–1829 (2010)

    Google Scholar 

  38. Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans. Vis. Comput. Graph. 12 (2007)

    Google Scholar 

  39. Munzner, T.: Visualization Analysis and Design. CRC Press, Taylor & Francis Group, Boca Raton (2014)

    Google Scholar 

  40. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels: efficient graph kernels from propagated information. Mach. Learn. 102(2), 209–245 (2016). https://doi.org/10.1007/s10994-015-5517-9

  41. Pintado, S., Jörnsten, R.: Functional analysis via extensions of the band depth. IMS Lect. Notes-Monogr. Ser. 54 (2007). https://doi.org/10.1214/074921707000000085

  42. Pöthkow, K., Weber, B., Hege, H.C.: Probabilistic marching cubes. Comput. Graph. Forum 30(3) (2011)

    Google Scholar 

  43. Raj, M., Whitaker, R.T.: Visualizing multidimensional data with order statistics. Comput. Graph. Forum 37, 277–287 (2018). https://doi.org/10.1111/cgf.13419

  44. Raj, M., Mirzargar, M., Kirby, R.M., Whitaker, R.T., Preston, J.S.: Evaluating alignment of shapes by ensemble visualization. IEEE Comput. Graph. Appl. 36 (2015). https://doi.org/10.1109/MCG.2015.70

  45. Raj, M., Mirzargar, M., Ricci, R., Kirby, R., Whitaker, R.T.: Path boxplots: a method for characterizing uncertainty in path ensembles on a graph. J. Comput. Graph. Stat. 26 (2016). https://doi.org/10.1080/10618600.2016.1209115

  46. Rosanwo, O., Petz, C., Hotz, I., Prohaska, S., Hege, H.C.: Dual streamline seeding. In: IEEE Pacific Visualization Symposium’09, pp. 9–16 (2009)

    Google Scholar 

  47. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  48. Serfling, R.: A depth function and a scale curve based on spatial quantiles. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the L1-Norm and Related Methods, pp. 25–38. Birkhäuser, Basel (2002)

    Google Scholar 

  49. Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A simple and flexible volume rendering framework for graphics-hardware–based raycasting. In: Proceedings of the International Workshop on Volume Graphics’05, pp. 187–195 (2005)

    Google Scholar 

  50. Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2), 316–334 (2011). https://doi.org/10.1198/jcgs.2011.09224

  51. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). https://doi.org/10.1126/science.290.5500.2319

  52. Tukey, J.W.: Mathematics and the picturing of data. In: James, R. (ed.) Proceedings of the International Congress of Mathematicians, pp. 523–531 (1975)

    Google Scholar 

  53. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

    Google Scholar 

  54. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  55. Ware, C.: Information Visualization, 3rd edn. Morgan Kaufmann, San Francisco (2013)

    Google Scholar 

  56. Whitaker, R.T.: Reducing aliasing artifacts in iso-surfaces of binary volumes. In: IEEE Symposium on Volume Visualization (2000)

    Google Scholar 

  57. Whitaker, R.T., Mirzargar, M., Kirby, R.: Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans. Vis. Comput. Graph. 19, 2713–2722 (2013). https://doi.org/10.1109/TVCG.2013.143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Whitaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whitaker, R., Hotz, I. (2020). Transformations, Mappings, and Data Summaries. In: Chen, M., Hauser, H., Rheingans, P., Scheuermann, G. (eds) Foundations of Data Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-34444-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34444-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34443-6

  • Online ISBN: 978-3-030-34444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics